An overview of potential molecular mechanisms involved in VSMC phenotypic modulation

被引:87
作者
Zhang, Ming-Jie [1 ]
Zhou, Yi [1 ]
Chen, Lei [1 ]
Wang, Yan-Qin [2 ]
Wang, Xu [1 ]
Pi, Yan [1 ]
Gao, Chang-Yue [1 ]
Li, Jing-Cheng [1 ]
Zhang, Li-Li [1 ]
机构
[1] Third Mil Med Univ, Dept Neurol, Inst Surg Res, Daping Hosp, 10 Changjiang Branch Rd, Chongqing 400042, Peoples R China
[2] Zibo Mil Subarea, Retired Cadres Clin 1, Zibo 255000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Vascular smooth muscle cells; Phenotypic modulation; Molecular mechanisms; MicroRNAs; Ion channels; VASCULAR SMOOTH-MUSCLE; GROWTH-FACTOR RECEPTOR; CELL-PROLIFERATION; DOWN-REGULATION; CONTRACTILE PHENOTYPE; SIGNALING PATHWAYS; NEOINTIMAL FORMATION; MEDIATED REGULATION; GENE-EXPRESSION; CONTROL ELEMENT;
D O I
10.1007/s00418-015-1386-3
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 129 条
[21]   Characterization of Ion Channels Involved in the Proliferative Response of Femoral Artery Smooth Muscle Cells [J].
Cidad, Pilar ;
Moreno-Dominguez, Alejandro ;
Novensa, Laura ;
Roque, Merce ;
Barquin, Leire ;
Heras, Magda ;
Teresa Perez-Garcia, M. ;
Lopez-Lopez, Jose R. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2010, 30 (06) :1203-U297
[22]   miR-145 and miR-143 regulate smooth muscle cell fate and plasticity [J].
Cordes, Kimberly R. ;
Sheehy, Neil T. ;
White, Mark P. ;
Berry, Emily C. ;
Morton, Sarah U. ;
Muth, Alecia N. ;
Lee, Ting-Hein ;
Miano, Joseph M. ;
Ivey, Kathryn N. ;
Srivastava, Deepak .
NATURE, 2009, 460 (7256) :705-U80
[23]   Role for miR-204 in human pulmonary arterial hypertension [J].
Courboulin, Audrey ;
Paulin, Roxane ;
Giguere, Nellie J. ;
Saksouk, Nehme ;
Perreault, Tanya ;
Meloche, Jolyane ;
Paquet, Eric R. ;
Biardel, Sabrina ;
Provencher, Steeve ;
Cote, Jacques ;
Simard, Martin J. ;
Bonnet, Sebastien .
JOURNAL OF EXPERIMENTAL MEDICINE, 2011, 208 (03) :535-548
[24]   SMAD proteins control DROSHA-mediated microRNA maturation [J].
Davis, Brandi N. ;
Hilyard, Aaron C. ;
Lagna, Giorgio ;
Hata, Akiko .
NATURE, 2008, 454 (7200) :56-U2
[25]   Induction of MicroRNA-221 by Platelet-derived Growth Factor Signaling Is Critical for Modulation of Vascular Smooth Muscle Phenotype [J].
Davis, Brandi N. ;
Hilyard, Aaron C. ;
Nguyen, Peter H. ;
Lagna, Giorgio ;
Hata, Akiko .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (06) :3728-3738
[26]   Micromanaging Vascular Smooth Muscle Cell Differentiation and Phenotypic Modulation [J].
Davis-Dusenbery, Brandi N. ;
Wu, Connie ;
Hata, Akiko .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2011, 31 (11) :2370-2377
[27]   Inhibition of cGMP-dependent protein kinase reverses phenotypic modulation of vascular smooth muscle cells [J].
Dey, NB ;
Foley, KF ;
Lincoln, TM ;
Dostmann, WR .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2005, 45 (05) :404-413
[28]   MicroRNAs in Cancer [J].
Di Leva, Gianpiero ;
Garofalo, Michela ;
Croce, Carlo M. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 9, 2014, 9 :287-314
[29]   The knockout of miR-143 and-145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease [J].
Ella, L. ;
Quintavalle, M. ;
Zhang, J. ;
Contu, R. ;
Cossu, L. ;
Latronico, M. V. G. ;
Peterson, K. L. ;
Indolfi, C. ;
Catalucci, D. ;
Chen, J. ;
Courtneidge, S. A. ;
Condorelli, G. .
CELL DEATH AND DIFFERENTIATION, 2009, 16 (12) :1590-1598
[30]   Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells [J].
Evanko, SP ;
Angello, JC ;
Wight, TN .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1999, 19 (04) :1004-1013