Performance of Sphere Decoding of Block Codes

被引:21
作者
El-Khamy, Mostafa [1 ]
Vikalo, Haris [2 ]
Hassibi, Babak [3 ]
McEliece, Robert J. [3 ]
机构
[1] Univ Alexandria, Dept Elect Engn, Alexandria, Egypt
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[3] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
关键词
Maximum likelihood decoding; sphere decoding; performance bounds; Reed-Solomon codes; block codes; decoding radius; symmetric channels; ERROR-PROBABILITY; REED-SOLOMON; LATTICE; SEARCH; BOUNDS;
D O I
10.1109/TCOMM.2009.10.080402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A sphere decoder searches for the closest lattice point within a certain search radius. The search radius provides a tradeoff between performance and complexity. We focus on analyzing the performance of sphere decoding of linear block codes. We analyze the performance of soft-decision sphere decoding on AWGN channels and a variety of modulation schemes. A hard-decision sphere decoder is a bounded distance decoder with the corresponding decoding radius. We analyze the performance of hard-decision sphere decoding on binary and q-ary symmetric channels. An upper bound on the. performance of maximum-likelihood decoding of linear codes defined over F-q (e.g. Reed-Solomon codes) and transmitted over q-ary symmetric channels is derived and used in the analysis. We then discuss sphere decoding of general block codes or lattices with arbitrary modulation schemes. The tradeoff between the performance and complexity of a sphere decoder is then discussed.
引用
收藏
页码:2940 / 2950
页数:11
相关论文
共 30 条
[1]   Closest point search in lattices [J].
Agrell, E ;
Eriksson, T ;
Vardy, A ;
Zeger, K .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) :2201-2214
[2]  
AJI SM, 1999, P IMA WORKSH COD GRA, P195
[3]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[4]   THE TECHNOLOGY OF ERROR-CORRECTING CODES [J].
BERLEKAMP, ER .
PROCEEDINGS OF THE IEEE, 1980, 68 (05) :564-593
[5]   INHERENT INTRACTABILITY OF CERTAIN CODING PROBLEMS [J].
BERLEKAMP, ER ;
MCELIECE, RJ ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :384-386
[6]   On maximum-likelihood detection and the search for the closest lattice point [J].
Damen, MO ;
El Gamal, H ;
Caire, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (10) :2389-2402
[7]  
DAMEN MO, 2000, IEEE COMMUN LETT MAY, P161
[8]  
Divsalar D, 2000, GLOB TELECOMM CONF, P1605, DOI 10.1109/GLOCOM.2000.891909
[9]  
DIVSALAR D, 1999, 42139 TMO NASA JPL
[10]  
El-Khamy M., 2004, 42 ALL C COMM CONTR