A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites

被引:130
作者
Adnan, Ashfaq
Sun, C. T.
Mahfuz, Hassan
机构
[1] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
[2] Florida Atlantic Univ, Dept Ocean Engn, Boca Raton, FL 33431 USA
基金
美国国家科学基金会;
关键词
particle-reinforced composites; nanostructures; polymers; molecular dynamics simulation; elastic properties;
D O I
10.1016/j.compscitech.2006.09.015
中图分类号
TB33 [复合材料];
学科分类号
摘要
The influence of filler size on elastic properties of nanoparticle reinforced polymer composites is investigated using molecular dynamics (MD) simulations. Molecular models for a system of nanocomposites are developed by embedding a fullerene bucky-ball of various sizes into an amorphous polyethylene matrix. In all cases, bucky-balls are modeled as non-deformable solid inclusions and infused in the matrix with a fixed volume fraction. The interaction between polymer and the nanoparticle is prescribed by the Lennard-Jones nonbonded potential. The mechanical properties for neat polymer and nanocomposites are evaluated by simulating a series of unidirectional and hydrostatic tests, both in tension and compression. Simulation results show that the elastic properties of nanocomposites are significantly enhanced with the reduction of bucky-ball size. An examination at the atomic level reveals that densification of polymer matrix near the nanoparticle as well as the filler-matrix interaction energy play the major role in completing the size effect. (c) 2006 Published by Elsevier Ltd.
引用
收藏
页码:348 / 356
页数:9
相关论文
共 25 条
[1]  
Allen MP, 1987, COMPUTER SIMULATIONS, DOI DOI 10.2307/2938686
[2]   A NEW APPROACH TO THE APPLICATION OF MORI-TANAKA THEORY IN COMPOSITE-MATERIALS [J].
BENVENISTE, Y .
MECHANICS OF MATERIALS, 1987, 6 (02) :147-157
[3]  
Binder, 1995, MONTE CARLO MOL DYNA
[4]   MOLECULAR-DYNAMICS SIMULATION OF AN AMORPHOUS POLYMER UNDER TENSION .1. PHENOMENOLOGY [J].
BROWN, D ;
CLARKE, JHR .
MACROMOLECULES, 1991, 24 (08) :2075-2082
[5]   Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites [J].
Chisholm, N ;
Mahfuz, H ;
Rangari, VK ;
Ashfaq, A ;
Jeelani, S .
COMPOSITE STRUCTURES, 2005, 67 (01) :115-124
[6]   Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles [J].
Cho, J. ;
Joshi, M. S. ;
Sun, C. T. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (13) :1941-1952
[7]   THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS [J].
ESHELBY, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :376-396
[8]   The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation [J].
Frankland, SJV ;
Harik, VM ;
Odegard, GM ;
Brenner, DW ;
Gates, TS .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) :1655-1661
[9]   Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate [J].
Jiang, L ;
Lam, YC ;
Tam, KC ;
Chua, TH ;
Sim, GW ;
Ang, LS .
POLYMER, 2005, 46 (01) :243-252
[10]   Experimental trends in polymer nanocomposites - a review [J].
Jordan, J ;
Jacob, KI ;
Tannenbaum, R ;
Sharaf, MA ;
Jasiuk, I .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 393 (1-2) :1-11