On r-primitive k-normal elements over finite fields

被引:4
作者
Rani, Mamta [1 ]
Sharma, Avnish K. [1 ]
Tiwari, Sharwan K. [2 ]
机构
[1] Univ Delhi, Dept Math, New Delhi 110007, India
[2] Def Res & Dev Org, Sci Anal Grp, Delhi 110054, India
关键词
Finite fields; r-primitive elements; k-normal elements; Characters; NORMAL BASES; EXISTENCE;
D O I
10.1016/j.ffa.2022.102053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r, n be positive integers, k be a non-negative integer and q be any prime power such that r q(n) - 1. An element alpha of the finite field F-qn is called an r-primitive element, if its multiplicative order is (q(n) - 1)/r and it is called a k-normal element over F-q, if the degree of the greatest common divisor of the polynomials m alpha(x) = sigma(n)(i=1) alpha(qi-1) x(n-i )and xn( - 1) is k. In this article, we discuss the existence of an element alpha is an element of F-qn which is both r-primitive and k-normal over F-q. In particular, we show that there exists an element alpha E F-qn, which is both 2-primitive and 2-normal over F-q if and only if q is an odd prime power and either n >= 5 and gcd(q(3) - q, n) &NOTEQUexpressionL;1 or n = 4 and q equivalent to 1(mod 4).(C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 24 条
[1]   Existence of primitive 2-normal elements in finite fields [J].
Aguirre, Josimar J. R. ;
Neumann, Victor G. L. .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
[2]   Some notes on the k-normal elements and k-normal polynomials over finite fields [J].
Alizadeh, Mahmood .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (01)
[3]  
[Anonymous], 2020, SAGEMATH SAGE MATH S
[4]   On k-normal elements over finite fields [J].
Antonio Sozaya-Chan, Jose ;
Tapia-Recillas, Horacio .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 :94-107
[5]   Elements of high order in Artin-Schreier extensions of finite fields Fq [J].
Brochero Martinez, F. E. ;
Reis, Lucas .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 :24-33
[6]  
Carvalho C., 2021, ARXIV211213151
[7]   The primitive normal basis theorem without a computer [J].
Cohen, SD ;
Huczynska, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :41-56
[8]   FINITE FIELD EXTENSIONS WITH THE LINE OR TRANSLATE PROPERTY FOR r-PRIMITIVE ELEMENTS [J].
Cohen, Stephen D. ;
Kapetanakis, Giorgos .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 111 (03) :313-319
[9]   The strong primitive normal basis theorem [J].
Cohen, Stephen D. ;
Huczynska, Sophie .
ACTA ARITHMETICA, 2010, 143 (04) :299-332
[10]   A CLASS OF INCOMPLETE CHARACTER SUMS [J].
Fu, Lei ;
Wan, Daqing .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (04) :1195-1211