Searching for Binary and Nonbinary Block and Convolutional LDPC Codes

被引:52
作者
Bocharova, Irina E. [1 ]
Kudryashov, Boris D. [1 ]
Johannesson, Rolf [2 ]
机构
[1] St Petersburg Univ Informat Technol Mech & Opt, Dept Informat Syst, St Petersburg 197101, Russia
[2] Lund Univ, Dept Elect & Informat Technol, SE-22100 Lund, Sweden
关键词
Channel coding; block codes; convolutional codes; LDPC codes; QC codes; nonbinary LDPC codes; iterative decoding; belief propagation; AWGN channels; code design; PARITY-CHECK CODES; DESIGN; CONSTRUCTION;
D O I
10.1109/TIT.2015.2496213
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A unified approach to search for and optimize codes determined by their sparse parity-check matrices is presented. Replacing the nonzero elements of a binary parity-check matrix (the base or parent matrix) either by circulants or by companion matrices of elements from a finite field GF(2(m)), we obtain quasi-cyclic low-density parity-check (LDPC) block codes and binary images of nonbinary LDPC block codes, respectively. By substituting monomials of a formal variable D, we obtain the polynomial description of an LDPC convolutional code. A set of performance measures applicable to different classes of LDPC codes is considered, and a greedy algorithm for code performance optimization is presented. The heart of the new optimization algorithm is a fast procedure for searching for LDPC codes with large girth of their Tanner graphs. For a few classes of LDPC codes, examples of codes combining good error-correcting performance with compact representation are obtained. In particular, we present optimized convolutional LDPC codes and conclude that the LDPC block codes are still superior to their convolutional counterparts if both decoding complexity and coding delay are considered. Moreover, a specific channel model can easily be embedded into the optimization loop. Thereby, the code can be optimized for a specific channel. The efficiency of such an optimization is demonstrated via an example of faster than Nyquist (FTN) signaling using LDPC codes. The FTN strategy combined with a rate R = 1/2 LDPC code of length 64 800 optimized for effective data rate R = 3/4 gains more than 0.5 dB compared with the standard LDPC codes of the same rate and length. The obtained gain corresponds to transmission at the capacity of the binary input additive white Gaussian noise channel. In most numerical examples, we consider codes with bidiagonal structure of the parity-check matrix. This restriction preserves low encoding complexity and allows fair comparison with codes selected for communication standards.
引用
收藏
页码:163 / 183
页数:21
相关论文
共 47 条
[1]   Faster-Than-Nyquist Signaling [J].
Anderson, John B. ;
Rusek, Fredrik ;
Owall, Viktor .
PROCEEDINGS OF THE IEEE, 2013, 101 (08) :1817-1830
[2]  
[Anonymous], IEEE VEH TECHN C
[3]  
[Anonymous], ELECT J COMBIN
[4]  
[Anonymous], 2005, P80216ED12 IEEE
[5]  
[Anonymous], 2009, DIG VID BROADC DVB
[6]   Code rate and the area under extrinsic information transfer curves [J].
Ashikhmin, A ;
Kramer, G ;
ten Brink, S .
ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, :115-115
[7]  
Asratian A. S., 1998, Cambridge Tracts in Mathematics
[8]  
Bocharova I. E., 2012, 2012 7th International Symposium on Turbo Codes & Iterative Information Processing (ISTC), P150, DOI 10.1109/ISTC.2012.6325217
[9]  
Bocharova I. E., 2012, Proceedings of the 2012 IEEE International Symposium on Information Theory - ISIT, P3083, DOI 10.1109/ISIT.2012.6284129
[10]   Graph-based convolutional and block LDPC codes [J].
Bocharova, I. E. ;
Kudryashov, B. D. ;
Satyukov, R. V. .
PROBLEMS OF INFORMATION TRANSMISSION, 2009, 45 (04) :357-377