Controlling Hydrogen Evolution during Photoreduction of CO2 to Formic Acid Using [Rh(R-bpy)(Cp*)Cl]+ Catalysts: A Structure-Activity Study

被引:39
作者
Todorova, Tanya K. [1 ]
Tran Ngoc Huan [1 ]
Wang, Xia [1 ]
Agarwala, Hemlata [1 ]
Fontecave, Marc [1 ]
机构
[1] Univ Paris 06, Lab Chim Proc Biol, Coll France, CNRS,UMR 8229, 11 Pl Marcelin Berthelot, F-75231 Paris 05, France
关键词
LOCAL PROTON SOURCE; ELECTROCATALYTIC REDUCTION; CARBON-DIOXIDE; ELECTROCHEMICAL PROPERTIES; MOLECULAR CATALYSIS; PRODUCT SELECTIVITY; PENDANT AMINES; COMPLEXES; LIGAND; RHODIUM;
D O I
10.1021/acs.inorgchem.9b00371
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The photochemical reduction of CO, to formic acid catalyzed by a series of [Rh(4,4'-R-bpy)(Cp*)Cl](+) and [Rh(5,5'-COOH-bpy)(Cp*)Cl](+) complexes (Cp* = pentamethylcyclopentadienyl, bpy = 2,2'-bipyridine, and R = OCH3, CH3, H, COOC2H5, CF3, NH2, or COOH) was studied to assess how modifications in the electronic structure of the catalyst affect its selectivity, defined as the HCOOH:H-2 product ratio. A direct molecular-level influence of the functional group on the initial reaction rate for CO2 versus proton reduction reactions was established. Density functional theory computations elucidated for the first time the respective role of the [RhH] and [Cp*H] tautomers, recognizing rhodium hydride as the key player for both reactions. In particular, our calculations explain the observed tendency of electron-donating substituents to favor CO2 reduction by means of decreasing the hydricity of the Rh-H bond, resulting in a lower hydride transfer barrier toward formic acid production as compared to substituents with an electron-withdrawing nature that favor more strongly the reduction of protons to hydrogen.
引用
收藏
页码:6893 / 6903
页数:11
相关论文
共 72 条
[1]   Ruthenium Bis-diimine Complexes with a Chelating Thioether Ligand: Delineating 1,10-Phenanthrolinyl and 2,2′-Bipyridyl Ligand Substituent Effects [J].
Al-Rawashdeh, Nathir A. F. ;
Chatterjee, Sayandev ;
Krause, Jeanette A. ;
Connick, William B. .
INORGANIC CHEMISTRY, 2014, 53 (01) :294-307
[2]  
[Anonymous], J CHEM SOC CHEM COMM, DOI DOI 10.1039/C39890001259
[3]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[4]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[5]   Synthesis, Characterization, and DFT Analysis of Bis-Terpyridyl-Based Molecular Cobalt Complexes [J].
Aroua, Safwan ;
Todorova, Tanya K. ;
Hommes, Paul ;
Charnoreau, Lise-Marie ;
Reissig, Hans-Ulrich ;
Mougel, Victor ;
Fontecave, Marc .
INORGANIC CHEMISTRY, 2017, 56 (10) :5930-5940
[6]   Dissection of Electronic Substituent Effects in Multielectron-Multistep Molecular Catalysis. Electrochemical CO2-to-CO Conversion Catalyzed by Iron Porphyrins [J].
Azcarate, Iban ;
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (51) :28951-28960
[7]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[8]   Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production [J].
Blakemore, James D. ;
Gupta, Ayush ;
Warren, Jeffrey J. ;
Brunschwig, Bruce S. ;
Gray, Harry B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18288-18291
[9]   Electrocatalytic reduction of CO2 into formate with [(eta(5)-Me5C5)M(L)Cl](+) complexes (L = 2,2'-bipyridine ligands; M = Rh(III) and Ir(III)) [J].
Caix, C ;
ChardonNoblat, S ;
Deronzier, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 434 (1-2) :163-170
[10]   (Pentamethylcyclopentadienyl) (polypyridyl) rhodium and iridium complexes as electrocatalysts for the reduction of protons to dihydrogen and the hydrogenation of organics [J].
Caix, C ;
ChardonNoblat, S ;
Deronzier, A ;
Moutet, JC ;
Tingry, S .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1997, 540 (1-2) :105-111