Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation

被引:15
作者
Bertaccini, D. [1 ,2 ]
Durastante, F. [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Viale Ric Sci 1, Rome, Italy
[2] Natl Res Council CNR, Ist Applicaz Calcolo IAC M Picone, Rome, Italy
[3] Univ Pisa, Dipartimento Informat, Largo Bruno Pontecorvo 3, Pisa, Italy
关键词
Structured preconditioners in tensor form; Tensor trains; Fractional diffusion equations; Finite volumes; LINEAR-SYSTEMS;
D O I
10.1016/j.aml.2019.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a tensor structured preconditioner for the tensor train GMRES algorithm (or TT-GMRES for short) to approximate the solution of the all-at-once formulation of time-dependent fractional partial differential equations discretized in time by linear multistep formulas used in boundary value form and in space by finite volumes. Numerical experiments show that the proposed preconditioner is efficient for very large problems and is competitive, in particular with respect to the AMEn algorithm. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:92 / 97
页数:6
相关论文
共 17 条
[1]  
AXELSSON AOH, 1985, MATH COMPUT, V45, P153, DOI 10.1090/S0025-5718-1985-0790649-9
[2]   Block {ω}-circulant preconditioners for the systems of differential equations [J].
Bertaccini, D ;
Ng, MK .
CALCOLO, 2003, 40 (02) :71-90
[3]   Limited Memory Block Preconditioners for Fast Solution of Fractional Partial Differential Equations [J].
Bertaccini, Daniele ;
Durastante, Fabio .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) :950-970
[4]   Solving mixed classical and fractional partial differential equations using short-memory principle and approximate inverses [J].
Bertaccini, Daniele ;
Durastante, Fabio .
NUMERICAL ALGORITHMS, 2017, 74 (04) :1061-1082
[5]  
Breiten T, 2016, ELECTRON T NUMER ANA, V45, P107
[6]   Boundary value methods: The third way between linear multistep and Runge-Kutta methods [J].
Brugnano, L ;
Trigiante, D .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (10-12) :269-284
[7]   TT-GMRES: solution to a linear system in the structured tensor format [J].
Dolgov, S. V. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2013, 28 (02) :149-172
[8]   ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS [J].
Dolgov, Sergey V. ;
Savostyanov, Dmitry V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05) :A2248-A2271
[9]   SPECTRAL ANALYSIS AND MULTIGRID METHODS FOR FINITE VOLUME APPROXIMATIONS OF SPACE-FRACTIONAL DIFFUSION EQUATIONS [J].
Donatelli, Marco ;
Mazza, Mariarosa ;
Serra-Capizzano, Stefano .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) :A4007-A4039
[10]   O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling [J].
Khoromskij, Boris N. .
CONSTRUCTIVE APPROXIMATION, 2011, 34 (02) :257-280