Monochromatic stars in rainbow K3-free and S3 +-free colorings

被引:9
作者
Li, Xihe [1 ,2 ]
Wang, Ligong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Gallai-Ramsey number; Rainbow coloring; Monochromatic star; GALLAI-RAMSEY NUMBERS; COMPLETE GRAPHS; EDGE-COLORINGS; CYCLES;
D O I
10.1016/j.disc.2020.112131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two graphs G and H, we consider the Ramsey-type problem of finding the minimum integer n (denoted by egr(k)(G : H)) such that ((n)(2)) >= k and for every N >= n, every rainbow G-free k-coloring (using exactly k colors) of the complete graph K-N contains a monochromatic copy of H. In this paper, we determine egr(k)(K-3 : K-1,K- t) for all integers t >= 1 and k >= 3 completely. Let S-3(+) be the unique graph on four vertices consisting of a triangle and a pendant edge. We characterize egr(k)(S-3(+) 3 : K-1,K- t) for all integers t >= 1 and k >= 3t - 2. We also determine egr(k)(S-3(+) : K-1,K- t) for integers 1 <= t <= 5 and k >= 4. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 19 条
[1]   Gallai-Ramsey numbers of C7 with multiple colors [J].
Bruce, Dylan ;
Song, Zi-Xia .
DISCRETE MATHEMATICS, 2019, 342 (04) :1191-1194
[2]   Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs [J].
Chen, Ming ;
Li, Yusheng ;
Pei, Chaoping .
GRAPHS AND COMBINATORICS, 2018, 34 (06) :1185-1196
[3]   The Erdos-Hajnal conjecture for rainbow triangles [J].
Fox, Jacob ;
Grinshpun, Andrey ;
Pach, Janos .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 111 :75-125
[4]  
Fujita S, 2014, ASIA S PACIF DES AUT, P6, DOI 10.1109/ASPDAC.2014.6742851
[5]   Extensions of Gallai-Ramsey results [J].
Fujita, Shinya ;
Magnant, Colton .
JOURNAL OF GRAPH THEORY, 2012, 70 (04) :404-426
[6]   Gallai-Ramsey numbers for cycles [J].
Fujita, Shinya ;
Magnant, Colton .
DISCRETE MATHEMATICS, 2011, 311 (13) :1247-1254
[7]   Rainbow Generalizations of Ramsey Theory: A Survey [J].
Fujita, Shinya ;
Magnant, Colton ;
Ozeki, Kenta .
GRAPHS AND COMBINATORICS, 2010, 26 (01) :1-30
[8]   TRANSITIV ORIENTIERBARE GRAPHEN [J].
GALLAI, T .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2) :25-&
[9]   Rainbow numbers for cycles with pendant edges [J].
Gorgol, Izolda .
GRAPHS AND COMBINATORICS, 2008, 24 (04) :327-331
[10]   Edge colorings of complete graphs without tricolored triangles [J].
Gyárfás, A ;
Simonyi, G .
JOURNAL OF GRAPH THEORY, 2004, 46 (03) :211-216