Sobolev inequalities for probability measures on the real line

被引:74
作者
Barthe, F
Roberto, C
机构
[1] Univ Marne La Vallee, UMR 8050, CNRS, Lab Anal & Math Appl, F-77454 Marne La Vallee 2, France
[2] Univ Paris 12, UMR 8050, CNRS, Lab Anal & Math Appl, F-77454 Marne La Vallee, France
关键词
Sobolev inequalities; concentration;
D O I
10.4064/sm159-3-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a characterization of those probability measures on the real line which satisfy certain Sobolev inequalities. Our starting point is a simpler approach to the Bobkov-Gotze characterization of measures satisfying a logarithmic Sobolev inequality. As an application of the criterion we present a soft proof of the Latala-Oleszkiewicz inequality for exponential measures, and describe the measures on the line which have the same property. New concentration inequalities for product measures follow.
引用
收藏
页码:481 / 497
页数:17
相关论文
共 21 条
[1]  
Ane C., 2000, Sur les inegalites de Sobolev logarithmiques
[2]  
[Anonymous], 1959, TRIGONOMETRIC SERIES
[3]  
[Anonymous], COURS SPECIALISES
[4]  
[Anonymous], 2000, Lecture Notes in Math.
[5]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[7]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28
[8]   Variational formulas of Poincare-type inequalities in Banach spaces of functions on the line [J].
Chen, MF .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (03) :417-436
[9]  
CHEN MF, 2002, VARIATIONAL FORMULAS
[10]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083