Desiderata for Fractional Derivatives and Integrals

被引:89
作者
Hilfer, Rudolf [1 ]
Luchko, Yuri [2 ]
机构
[1] Univ Stuttgart, Fak Math & Phys, ICP, Allmandring 3, D-70569 Stuttgart, Germany
[2] Beuth Hsch Tech Berlin, Fachbereich Math Phys Chem, Luxemburger Str 10, D-13353 Berlin, Germany
关键词
fractional derivatives; fractional integrals; fractional calculus; CLASSIFICATION;
D O I
10.3390/math7020149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this brief article is to initiate discussions in this special issue by proposing desiderata for calling an operator a fractional derivative or a fractional integral. Our desiderata are neither axioms nor do they define fractional derivatives or integrals uniquely. Instead they intend to stimulate the field by providing guidelines based on a small number of time honoured and well established criteria.
引用
收藏
页数:5
相关论文
共 8 条
  • [1] [Anonymous], 1974, FRACTIONAL CALCULUS, DOI 10.1007/BFb0067096
  • [2] THERMODYNAMIC SCALING DERIVED VIA ANALYTIC CONTINUATION FROM THE CLASSIFICATION OF EHRENFEST
    HILFER, R
    [J]. PHYSICA SCRIPTA, 1991, 44 (04): : 321 - 322
  • [3] MULTISCALING AND THE CLASSIFICATION OF CONTINUOUS PHASE-TRANSITIONS
    HILFER, R
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (02) : 190 - 192
  • [4] Hilfer R., 2019, Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory, P47
  • [5] Hilfer R., 2000, Applications of Fractional Calculus in Physics, P429
  • [6] Kochubei A., 2019, Handbook of Fractional Calculus with Applications: Basic Theory, P23
  • [7] Liouville J., 1832, J. Lcole Polytech, V13, P1
  • [8] What is a fractional derivative?
    Ortigueira, Manuel D.
    Tenreiro Machado, J. A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 4 - 13