Desiderata for Fractional Derivatives and Integrals

被引:97
作者
Hilfer, Rudolf [1 ]
Luchko, Yuri [2 ]
机构
[1] Univ Stuttgart, Fak Math & Phys, ICP, Allmandring 3, D-70569 Stuttgart, Germany
[2] Beuth Hsch Tech Berlin, Fachbereich Math Phys Chem, Luxemburger Str 10, D-13353 Berlin, Germany
关键词
fractional derivatives; fractional integrals; fractional calculus; CLASSIFICATION;
D O I
10.3390/math7020149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this brief article is to initiate discussions in this special issue by proposing desiderata for calling an operator a fractional derivative or a fractional integral. Our desiderata are neither axioms nor do they define fractional derivatives or integrals uniquely. Instead they intend to stimulate the field by providing guidelines based on a small number of time honoured and well established criteria.
引用
收藏
页数:5
相关论文
共 8 条
[1]  
[Anonymous], 1974, FRACTIONAL CALCULUS, DOI 10.1007/BFb0067096
[2]   THERMODYNAMIC SCALING DERIVED VIA ANALYTIC CONTINUATION FROM THE CLASSIFICATION OF EHRENFEST [J].
HILFER, R .
PHYSICA SCRIPTA, 1991, 44 (04) :321-322
[3]   MULTISCALING AND THE CLASSIFICATION OF CONTINUOUS PHASE-TRANSITIONS [J].
HILFER, R .
PHYSICAL REVIEW LETTERS, 1992, 68 (02) :190-192
[4]  
Hilfer R., 2019, Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory, P47
[5]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics, P429
[6]  
Kochubei A., 2019, Handbook of Fractional Calculus with Applications: Basic Theory, P23
[7]  
Liouville J., 1832, J. Lcole Polytech, V13, P1
[8]   What is a fractional derivative? [J].
Ortigueira, Manuel D. ;
Tenreiro Machado, J. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :4-13