The Stability and Evolution of Curved Domains Arising from One-Dimensional Localized Patterns

被引:10
作者
Glasner, Karl B. [1 ]
Lindsay, Alan E. [2 ,3 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2013年 / 12卷 / 02期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
localized states; curvature; matched asymptotics; surface diffusion; geometric motion; HOMOCLINIC SNAKING; CURVATURE; MOTION;
D O I
10.1137/120893008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many pattern forming systems, narrow two-dimensional domains can arise whose cross sections are roughly one-dimensional localized solutions. This paper investigates this phenomenon in the variational Swift-Hohenberg equation. Stability of straight line solutions is analyzed, leading to criteria for either curve buckling or curve disintegration. Matched asymptotic expansions are used to derive a two-term expression for the geometric motion of curved domains, which includes both elastic and surface diffusion-type regularizations of curve motion. This leads to novel equilibrium curves and space-filling pattern proliferation. Numerical tests are used to confirm and illustrate these phenomena.
引用
收藏
页码:650 / 673
页数:24
相关论文
共 30 条
  • [1] When is a periodic function the curvature of a closed plane curve?
    Arroyo, J.
    Garay, O. J.
    Mencia, J. J.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (05) : 405 - 414
  • [2] To Snake or Not to Snake in the Planar Swift-Hohenberg Equation
    Avitabile, Daniele
    Lloyd, David J. B.
    Burke, John
    Knobloch, Edgar
    Sandstede, Bjoern
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03): : 704 - 733
  • [3] SNAKES, LADDERS, AND ISOLAS OF LOCALIZED PATTERNS
    Beck, Margaret
    Knobloch, Juergen
    Lloyd, David J. B.
    Sandstede, Bjoern
    Wagenknecht, Thomas
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) : 936 - 972
  • [4] Localized states in the generalized Swift-Hohenberg equation
    Burke, John
    Knobloch, Edgar
    [J]. PHYSICAL REVIEW E, 2006, 73 (05):
  • [5] Exponential asymptotics of localised patterns and snaking bifurcation diagrams
    Chapman, S. J.
    Kozyreff, G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 319 - 354
  • [6] Chopp D.L., 1999, Interfaces and Free Boundaries, V1, P1
  • [7] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112
  • [8] The emergence of a coherent structure for coherent structures: localized states in nonlinear systems
    Dawes, J. H. P.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1924): : 3519 - 3534
  • [9] A REGULARIZED EQUATION FOR ANISOTROPIC MOTION-BY-CURVATURE
    DICARLO, A
    GURTIN, ME
    PODIOGUIDUGLI, P
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (04) : 1111 - 1119
  • [10] PATTERNS OF PROPAGATING PULSES
    ELPHICK, C
    MERON, E
    SPIEGEL, EA
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) : 490 - 503