Ultra-Capacitive Carbon Neural Probe Allows Simultaneous Long-Term Electrical Stimulations and High-Resolution Neurotransmitter Detection

被引:67
作者
Nimbalkar, Surabhi [1 ,5 ]
Castagnola, Elisa [1 ,5 ]
Balasubramani, Arvind [1 ,5 ]
Scarpellini, Alice [2 ]
Samejima, Soshi [3 ,4 ,5 ]
Khorasani, Abed [3 ,4 ,5 ]
Boissenin, Adrien [3 ,4 ,5 ]
Thongpang, Sanitta [3 ,4 ,5 ]
Moritz, Chet [3 ,4 ,5 ]
Kassegne, Sam [1 ,5 ]
机构
[1] San Diego State Univ, Coll Engn, Dept Mech Engn, MEMS Res Lab, 5500 Campanile Dr, San Diego, CA 92182 USA
[2] Ist Italiano Tecnol, Dept Nanochem, Via Morego 30, I-16163 Genoa, Italy
[3] Univ Washington, Div Phys Therapy, Dept Rehabil Med, Seattle, WA 98195 USA
[4] Univ Washington, Div Phys Therapy, Dept Physiol & Biophys, Seattle, WA 98195 USA
[5] CSNE, ERC, NSF, Seattle, WA 98105 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
IRIDIUM OXIDE; SENSITIVE DETECTION; MICROELECTRODES; ELECTRODES; DOPAMINE; IMPEDANCE;
D O I
10.1038/s41598-018-25198-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a new class of carbon-based neural probes that consist of homogeneous glassy carbon (GC) microelectrodes, interconnects and bump pads. These electrodes have purely capacitive behavior with exceptionally high charge storage capacity (CSC) and are capable of sustaining more than 3.5 billion cycles of bi-phasic pulses at charge density of 0.25 mC/cm(2). These probes enable both high SNR (>16) electrical signal recording and remarkably high-resolution real-time neurotransmitter detection, on the same platform. Leveraging a new 2-step, double-sided pattern transfer method for GC structures, these probes allow extended long-term electrical stimulation with no electrode material corrosion. Cross-section characterization through FIB and SEM imaging demonstrate strong attachment enabled by hydroxyl and carbonyl covalent bonds between GC microstructures and top insulating and bottom substrate layers. Extensive in-vivo and in-vitro tests confirmed: (i) high SNR (>16) recordings, (ii) highest reported CSC for non-coated neural probe (61.4 +/- 6.9 mC/cm(2)), (iii) high-resolution dopamine detection (10 nM level - one of the lowest reported so far), (iv) recording of both electrical and electrochemical signals, and (v) no failure after 3.5 billion cycles of pulses. Therefore, these probes offer a compelling multi-modal platform for long-term applications of neural probe technology in both experimental and clinical neuroscience.
引用
收藏
页数:14
相关论文
共 56 条
[11]   Morphology and conductivity of PEDOT layers produced by different electrochemical routes [J].
Castagnola, Valentina ;
Bayon, Chloe ;
Descamps, Emeline ;
Bergaud, Christian .
SYNTHETIC METALS, 2014, 189 :7-16
[12]   Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation [J].
Cogan, SF ;
Guzelian, AA ;
Agnew, WF ;
Yuen, TGH ;
McCreery, DB .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 137 (02) :141-150
[13]   Neural stimulation and recording electrodes [J].
Cogan, Stuart F. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2008, 10 :275-309
[14]   Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films [J].
Cui, XY ;
Martin, DC .
SENSORS AND ACTUATORS A-PHYSICAL, 2003, 103 (03) :384-394
[15]   Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation [J].
Cul, Xinyan Tracy ;
Zhou, David Daomin .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2007, 15 (04) :502-508
[16]   A silicon carbide array for electrocorticography and peripheral nerve recording [J].
Diaz-Botia, C. A. ;
Luna, L. E. ;
Neely, R. M. ;
Chamanzar, M. ;
Carraro, C. ;
Carmena, J. M. ;
Sabes, P. N. ;
Maboudian, R. ;
Maharbiz, M. M. .
JOURNAL OF NEURAL ENGINEERING, 2017, 14 (05)
[17]   Modeling and Characterization of Tissue/Electrode Interface in Capacitive μECoG Glassy Carbon Electrodes [J].
Goshi, N. ;
Vomero, M. ;
Dryg, I. ;
Seidman, S. ;
Kassegne, S. K. .
ENGINEERING CARBON HYBRIDS - CARBON ELECTRONICS 2, 2016, 72 (01) :83-90
[18]   Functionalization and characterization of pyrolyzed polymer based carbon microstructures for bionanoelectronics platforms [J].
Hirabayashi, Mieko ;
Mehta, Beejal ;
Vahidi, Nasim W. ;
Khosla, Ajit ;
Kassegne, Sam .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (11)
[19]   Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network [J].
Hu, Meng ;
He, Julong ;
Zhao, Zhisheng ;
Strobel, Timothy A. ;
Hu, Wentao ;
Yu, Dongli ;
Sun, Hao ;
Liu, Lingyu ;
Li, Zihe ;
Ma, Mengdong ;
Kono, Yoshio ;
Shu, Jinfu ;
Mao, Ho-kwang ;
Fei, Yingwei ;
Shen, Guoyin ;
Wang, Yanbin ;
Juhl, Stephen J. ;
Huang, Jian Yu ;
Liu, Zhongyuan ;
Xu, Bo ;
Tian, Yongjun .
SCIENCE ADVANCES, 2017, 3 (06)
[20]  
Huynh N. U., ECS M, P1064