Identification of ovarian cancer associated genes using an integrated approach in a Boolean framework

被引:12
作者
Kumar, Gaurav [1 ,2 ,3 ]
Breen, Edmond J. [4 ]
Ranganathan, Shoba [1 ,2 ,5 ]
机构
[1] Macquarie Univ, ARC Ctr Excellence Bioinformat, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia
[3] Virginia Commonwealth Univ, Sch Pharm, Ctr Biomarker Res & Personalized Med, Richmond, VA 23298 USA
[4] Macquarie Univ, APAF, Sydney, NSW 2109, Australia
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore 117597, Singapore
关键词
ESTROGEN-RECEPTOR; EXPRESSION; KINASE; DISCOVERY; DATABASE; NETWORKS; GENOMICS; DISEASE; CLASSIFICATION; MECHANISMS;
D O I
10.1186/1752-0509-7-12
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Cancer is a complex disease where molecular mechanism remains elusive. A systems approach is needed to integrate diverse biological information for the prognosis and therapy risk assessment using mechanistic approach to understand gene interactions in pathways and networks and functional attributes to unravel the biological behaviour of tumors. Results: We weighted the functional attributes based on various functional properties observed between cancerous and non-cancerous genes reported from literature. This weighing schema was then encoded in a Boolean logic framework to rank differentially expressed genes. We have identified 17 genes to be differentially expressed from a total of 11,173 genes, where ten genes are reported to be down-regulated via epigenetic inactivation and seven genes are up-regulated. Here, we report that the overexpressed genes IRAK1, CHEK1 and BUB1 may play an important role in ovarian cancer. We also show that these 17 genes can be used to form an ovarian cancer signature, to distinguish normal from ovarian cancer subjects and that the set of three genes, CHEK1, AR, and LYN, can be used to classify good and poor prognostic tumors. Conclusion: We provided a workflow using a Boolean logic schema for the identification of differentially expressed genes by integrating diverse biological information. This integrated approach resulted in the identification of genes as potential biomarkers in ovarian cancer.
引用
收藏
页数:14
相关论文
共 77 条
  • [1] Anbalagan Muralidharan, 2012, Nucl Recept Signal, V10, pe001, DOI 10.1621/nrs.10001
  • [2] [Anonymous], CANC CELL
  • [3] [Anonymous], 2006, INTERJOURNALCOMPLEX
  • [4] [Anonymous], NUCLEIC ACIDS RES S1
  • [5] A human MAP kinase interactome
    Bandyopadhyay, Sourav
    Chiang, Chih-yuan
    Srivastava, Jyoti
    Gersten, Merril
    White, Suhaila
    Bell, Russell
    Kurschner, Cornelia
    Martin, Christopher H.
    Smoot, Mike
    Sahasrabudhe, Sudhir
    Barber, Diane L.
    Chanda, Sumit K.
    Ideker, Trey
    [J]. NATURE METHODS, 2010, 7 (10) : 801 - U50
  • [6] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
  • [7] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [8] Oncogenic pathway signatures in human cancers as a guide to targeted therapies
    Bild, AH
    Yao, G
    Chang, JT
    Wang, QL
    Potti, A
    Chasse, D
    Joshi, MB
    Harpole, D
    Lancaster, JM
    Berchuck, A
    Olson, JA
    Marks, JR
    Dressman, HK
    West, M
    Nevins, JR
    [J]. NATURE, 2006, 439 (7074) : 353 - 357
  • [9] Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    Breitling, R
    Armengaud, P
    Amtmann, A
    Herzyk, P
    [J]. FEBS LETTERS, 2004, 573 (1-3) : 83 - 92
  • [10] Reproducibility of mass spectrometry based protein profiles for diagnosis of ovarian cancer across clinical studies: A systematic review
    Callesen, Anne K.
    Mogensen, Ole
    Jensen, Andreas K.
    Kruse, Torben A.
    Martinussen, Torben
    Jensen, Ole N.
    Madsen, Jonna S.
    [J]. JOURNAL OF PROTEOMICS, 2012, 75 (10) : 2758 - 2772