Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide

被引:173
作者
Liu, Li [1 ]
Liu, Shuxia [1 ]
Zhang, Qiuping [1 ]
Li, Cui [1 ]
Bao, Changli [1 ]
Liu, Xiaoting [1 ]
Xiao, Pengfei [1 ]
机构
[1] Jilin Univ, Coll Chem, Changchun 130026, Peoples R China
关键词
LIQUID-LIQUID-EXTRACTION; ION-EXCHANGE EQUILIBRIA; HEAVY-METAL IONS; SOLVENT-EXTRACTION; SURFACE; PRECIPITATION; CADMIUM(II); COPPER(II); ADSORBENT; SORPTION;
D O I
10.1021/je300551c
中图分类号
O414.1 [热力学];
学科分类号
摘要
Graphene oxide (GO) was prepared and characterized by Fourier transform infrared spectrometry (FT-IR) and scanning electron micrographs (SEM). Batch adsorption studies were carried out to investigate the adsorption data, including the effects of pH, initial concentration, contact time, and temperature. The adsorption of Au(III), Pd(II), and Pt(IV) was optimum at pH 6.0. The adsorption isotherms all obeyed the Langmuir equation in the case of Au(III), Pd(II), and Pt(IV), and the maximum adsorption capacities were 108.342 mg.g(-1), 80.775 mg.g(-1), and 71.378 mg.g(-1), respectively. The adsorption kinetics of Au(III), Pd(II), and Pt(IV) onto GO followed a pseudosecond-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. Thermodynamic parameters such as Gibbs energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (Delta S degrees) were calculated, indicating that the adsorption were spontaneous, endothermic, and feasible. The desorption studies showed that the best desorption reagents were 0.5 mol.dm(-3) thiourea-0.5 mol.dm(-3) HCl for Au(III) and 1.0 mol.dm(-3) thiourea-0.5 mol.dm(-3) HCl for both Pd(II) and Pt(IV).
引用
收藏
页码:209 / 216
页数:8
相关论文
共 50 条
  • [21] Adsorption Characteristics of Cadmium Ions from Aqueous Solution onto Pine Sawdust Biomass and Biochar
    Liu, Xiaofeng
    Xu, Xin
    Dong, Xiaoqiang
    Park, Junboum
    BIORESOURCES, 2019, 14 (02) : 4270 - 4283
  • [22] Arsenate Adsorption from Aqueous Solution onto Fe(III)-Modified Crop Straw Biochars
    Pan, Jing-Jian
    Jiang, Jun
    Qian, Wei
    Xu, Ren-kou
    ENVIRONMENTAL ENGINEERING SCIENCE, 2015, 32 (11) : 922 - 929
  • [23] Removal of Vanadium(IV) Ions from Aqueous Solution by Graphene Oxide
    Tan, Shi-Ying
    Ouyang, Peng
    Zhang, Qiangqiang
    Yang, Sheng-Tao
    Wang, Haifang
    CHEMISTRYSELECT, 2022, 7 (35):
  • [24] Bisphenol A Adsorption from Aqueous Solution Using Graphene Oxide-Alginate Beads
    Fuzil, Nurul Syazana
    Othman, Nur Hidayati
    Ab Jamal, Nur Ain Shazwani Roslee
    Mustapa, Ana Najwa
    Alias, Nur Hashimah
    Dollah, 'Aqilah
    Him, Nik Raikhan Nik
    Marpani, Fauziah
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2022, 30 (02) : 597 - 612
  • [25] Removal of Nd(III), Sr(II) and Rb(I) Ions from Aqueous Solution by Thiacalixarene-Functionalized Graphene Oxide Composite as an Adsorbent
    Zhang, Peng
    Wang, Yaling
    Zhang, Dongxiang
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2016, 61 (10) : 3679 - 3691
  • [26] Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide
    Gao, Yuan
    Li, Yan
    Zhang, Liang
    Huang, Hui
    Hu, Junjie
    Shah, Syed Mazhar
    Su, Xingguang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 368 : 540 - 546
  • [27] Adsorption analysis of Zn(II) removal from aqueous solution onto Argemone maxicana biochar
    Kumar, Mohit
    Prasad, Durga
    Mondal, Monoj Kumar
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (05) : 4135 - 4148
  • [28] Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution
    Shi, Taihong
    Jia, Shiguo
    Chen, Ying
    Wen, Yinghong
    Du, Changming
    Guo, Huilin
    Wang, Zhuochao
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 169 (1-3) : 838 - 846
  • [29] BATCH ADSORPTION OF Zn(II) IONS FROM AQUEOUS SOLUTION ONTO SAWDUST
    Nacu, Gabriela
    Negrila, Lacramioara
    Bulgariu, Laura
    REVUE ROUMAINE DE CHIMIE, 2017, 62 (4-5) : 439 - 447
  • [30] Study on the Adsorption Performance and Adsorption Mechanism of Graphene Oxide by Red Sandstone in Aqueous Solution
    Li, Na
    Dai, WenHao
    Kang, HaiBo
    Lv, Beifeng
    Jiang, Ping
    Wang, Wei
    ADSORPTION SCIENCE & TECHNOLOGY, 2022, 2022