Selection of reference genes for quantitative RT-PCR studies on the gonad of the bivalve mollusc Pecten maximus L.

被引:23
作者
Mauriz, Oscar [1 ]
Maneiro, Veronica [1 ]
Luz Perez-Paralle, M. [1 ]
Luis Sanchez, Jose [1 ]
Juan Pazos, Antonio [1 ]
机构
[1] Univ Santiago de Compostela, Inst Acuicultura, Dept Bioquim & Biol Mol, Santiago De Compostela 15782, Spain
关键词
Gene expression; Normalization; Real-time PCR; Reference genes; Bivalve mollusks; Reproductive cycle; REAL-TIME PCR; SOFT-SHELL CLAMS; HOUSEKEEPING GENES; RELATIVE QUANTIFICATION; SUSPENDED CULTURE; AROUSA GALICIA; EXPRESSION; IDENTIFICATION; SCALLOP; HEMOCYTES;
D O I
10.1016/j.aquaculture.2012.10.020
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
For relative quantification of gene expression the mRNA levels of target genes must be normalized. The most common normalization strategy is the utilization of internal reference genes. However, the stability of reference genes must be validated for the conditions of the study. The aim of the present work is to select the best reference genes in the bivalve mollusc Pecten maximus during the reproductive cycle from a set of seven candidates: actin (act), 18S ribosomal RNA (18S), cytochrome c oxidase subunit 1 (cox1), eukaryotic translation elongation factor 1 alpha (ef1a), glyceraldehyde-3-phosphate dehydrogenase (gapdh), NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 7 (ndufa7), and 40S ribosomal protein SA (rpsa). In order to have samples at different stages of the reproductive cycle three specimens were sampled at approximately monthly intervals during a period of 7 months. Three different statistical models (geNorm, NormFinder and BestKeeper) have been used to analyze the results obtained by reverse transcription quantitative real time PCR (RT-qPCR). The most suitable reference genes were specific to each tissue. In P. maximus ovary ndufa7, rpsa and ef1a were the most stable genes. In P. maximus testis 18S, ndufa7 and gapdh were the best ranked reference genes. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:158 / 165
页数:8
相关论文
共 35 条
[1]   Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J].
Andersen, CL ;
Jensen, JL ;
Orntoft, TF .
CANCER RESEARCH, 2004, 64 (15) :5245-5250
[2]  
Araya MT, 2008, J INVERTEBR PATHOL, V99, P326, DOI 10.1016/j.jip.2008.08.002
[3]  
Barber B.J., 1991, Developments in Aquaculture and Fisheries Science, V21, P377
[4]   Quantitative real-time RT-PCR - a perspective [J].
Bustin, SA ;
Benes, V ;
Nolan, T ;
Pfaffl, MW .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2005, 34 (03) :597-601
[5]  
Bustin Stephen A, 2004, J Biomol Tech, V15, P155
[6]   The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments [J].
Bustin, Stephen A. ;
Benes, Vladimir ;
Garson, Jeremy A. ;
Hellemans, Jan ;
Huggett, Jim ;
Kubista, Mikael ;
Mueller, Reinhold ;
Nolan, Tania ;
Pfaffl, Michael W. ;
Shipley, Gregory L. ;
Vandesompele, Jo ;
Wittwer, Carl T. .
CLINICAL CHEMISTRY, 2009, 55 (04) :611-622
[7]   Reference gene selection for qPCR in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure [J].
Cubero-Leon, Elena ;
Ciocan, Corina M. ;
Minier, Christophe ;
Rotchell, Jeanette M. .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2012, 19 (07) :2728-2733
[8]   Evidence Based Selection of Housekeeping Genes [J].
de Jonge, Hendrik J. M. ;
Fehrmann, Rudolf S. N. ;
de Bont, Eveline S. J. M. ;
Hofstra, Robert M. W. ;
Gerbens, Frans ;
Kamps, Willem A. ;
de Vries, Elisabeth G. E. ;
van der Zee, Ate G. J. ;
Meerman, Gerard J. te ;
ter Elst, Arja .
PLOS ONE, 2007, 2 (09)
[9]   How to do successful gene expression analysis using real-time PCR [J].
Derveaux, Stefaan ;
Vandesompele, Jo ;
Hellemans, Jan .
METHODS, 2010, 50 (04) :227-230
[10]   Development of a Pacific oyster (Crassostrea gigas) 31,918-feature microarray: identification of reference genes and tissue-enriched expression patterns [J].
Dheilly, Nolwenn M. ;
Lelong, Christophe ;
Huvet, Arnaud ;
Favrel, Pascal .
BMC GENOMICS, 2011, 12