Rapid prediction of soil available sulphur using visible near-infrared reflectance spectroscopy

被引:2
|
作者
Mondal, Bhabani Prasad [1 ]
Sahoo, Rabi Narayan [1 ]
Ahmed, Nayan [1 ]
Singh, Rajiv Kumar [1 ]
Das, Bappa [2 ]
Mridha, Nilimesh [3 ]
Gakhar, Shalini [1 ]
机构
[1] ICAR Indian Agr Res Inst, New Delhi 110012, India
[2] ICAR Cent Coastal Agr Res Inst, Velha Goa, Goa, India
[3] ICAR Natl Inst Nat Fibre Engn & Technol, Kolkata, India
来源
关键词
Available sulphur; Multivariate models; PLSR; Reflectance spectroscopy; RF; REGRESSION; PLS;
D O I
10.56093/ijas.v91i9.116080
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Rapid and accurate prediction of soil available S, an important secondary nutrient, is crucial for its site-specific management in a cultivated region. Although traditional chemical analysis of any nutrient is an accurate method, but often costly, time-consuming and destructive in nature. Recently visible near-infrared (VIS-NIR) reflectance spectroscopic technique has gained its popularity for rapid, non-destructive and cost-effective assessment of soil nutrients. Hence, a study was carried out in an intensively cultivated region of Katol block of Nagpur, Maharashtra, during 2018-20 for rapid prediction of soil available S using spectroscopic technique. Both spectroscopic and chemical analyses were carried out using 132 georeferenced surface soil samples (0-15 cm depth). The descriptive statistical analysis showed that the available S content varied from 1.09 to 47.88 mg/kg. Multivariate models namely partial least square regression (PLSR) and random forest (RF) were applied to develop spectral models for S prediction from spectral dataset. Several statistical diagnostics like coefficient of determination (R-2), root mean square error (RMSE), ratio of performance deviation (RPD) and ratio of performance to interquartile distance (RPIQ) were used to evaluate the performances of two models. The best prediction of S was achieved from nonlinear RF model (R-2 = 0.71, RMSE = 8.86, RPD =1.18, RPIQ = 1.69) as compared to linear PLSR model (R-2 = 0.53, RMSE = 9.04, RPD = 1.16, RPIQ = 1.66) datasets. Therefore, the result suggested applying non-linear multivariate model (RF) for obtaining best predictability for S from spectroscopic technique.
引用
收藏
页码:1328 / 1332
页数:5
相关论文
共 50 条
  • [41] Visible and Near-Infrared Reflectance Spectroscopy for Assessment of Soil Properties in the Caucasus Mountains, Azerbaijan
    Mammadov, Elton
    Denk, Michael
    Riedel, Frank
    Lewinska, Karolina
    Kazmierowski, Cezary
    Glaesser, Cornelia
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2020, 51 (16) : 2111 - 2136
  • [42] In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy
    Waiser, Travis H.
    Morgan, Cristine L. S.
    Brown, David J.
    Hallmark, C. Tom
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2007, 71 (02) : 389 - 396
  • [43] Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field
    Cambou, Aurelie
    Cardinael, Remi
    Kouakoua, Ernest
    Villeneuve, Manon
    Durand, Celine
    Barthes, Bernard G.
    GEODERMA, 2016, 261 : 151 - 159
  • [44] Use of near-infrared reflectance spectroscopy in soil analysis
    Genot, Valerie
    Bock, Laurent
    Dardenne, Pierre
    Colinet, Gilles
    BIOTECHNOLOGIE AGRONOMIE SOCIETE ET ENVIRONNEMENT, 2014, 18 (02): : 247 - 261
  • [45] PREDICTION OF SHEEP RESPONSES BY NEAR-INFRARED REFLECTANCE SPECTROSCOPY
    ECKMAN, DD
    SHENK, JS
    WANGSNESS, PJ
    WESTERHAUS, MO
    JOURNAL OF DAIRY SCIENCE, 1983, 66 (09) : 1983 - 1987
  • [46] Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy
    Stevens, Antoine
    Nocita, Marco
    Toth, Gergely
    Montanarella, Luca
    van Wesemael, Bas
    PLOS ONE, 2013, 8 (06):
  • [47] Prediction of Soil Organic Matter Using Visible-Short Near-Infrared Imaging Spectroscopy
    Jiao Cai-xia
    Zheng Guang-hui
    Xie Xian-li
    Cui Xue-feng
    Shang Gang
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (10) : 3277 - 3281
  • [48] Paddy soil nutrient assessment using visible and near infrared reflectance spectroscopy
    Gholizadeh, A.
    Saberioon, M. M.
    Amin, M. S. M.
    PIAGENG 2013: IMAGE PROCESSING AND PHOTONICS FOR AGRICULTURAL ENGINEERING, 2013, 8761
  • [49] Rapid determination of cabbage quality using visible and near-infrared spectroscopy
    Kramchote, Somsak
    Nakano, Kazuhiro
    Kanlayanarat, Sirichai
    Ohashi, Shintaroh
    Takizawa, Kenichi
    Bai, Geng
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2014, 59 (02) : 695 - 700
  • [50] Rapid monitoring of grape withering using visible near-infrared spectroscopy
    Beghi, Roberto
    Giovenzana, Valentina
    Marai, Simone
    Guidetti, Riccardo
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2015, 95 (15) : 3144 - 3149