Xylanase Gene Transcription in Trichoderma reesei Is Triggered by Different Inducers Representing Different Hemicellulosic Pentose Polymers

被引:46
作者
Herold, Silvia [1 ]
Bischof, Robert [2 ]
Metz, Benjamin [1 ,2 ]
Seiboth, Bernhard [1 ,2 ]
Kubicek, Christian P. [1 ,2 ]
机构
[1] Vienna Univ Technol, Inst Chem Engn, Res Div Biotechnol & Microbiol, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Inst Chem Engn, Austrian Ctr Ind Biotechnol, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
D-XYLOSE METABOLISM; 2 MAJOR XYLANASES; HYPOCREA-JECORINA; ASPERGILLUS-NIGER; ENZYME-SYSTEM; L-ARABITOL; EXPRESSION; DEHYDROGENASE; ACTIVATOR; SOFTWARE;
D O I
10.1128/EC.00182-12
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The ascomycete Trichoderma reesei is a paradigm for the regulation and production of plant cell wall-degrading enzymes, including xylanases. Four xylanases, including XYN1 and XYN2 of glycosyl hydrolase family 11 (GH11), the GH10 XYN3, and the GH30 XYN4, were already described. By genome mining, we identified a fifth xylanase, XYN5, belonging to GH11. Transcriptional analysis reveals that the expression of all xylanases but xyn3 is induced by D-xylose, dependent on the cellulase and xylanase regulator XYR1 and negatively regulated by the carbon catabolite repressor CRE1. Impairment of D-xylose catabolism at the D-xylose reductase and xylitol dehydrogenase step strongly enhanced induction by D-xylose. Knockout of the L-xylulose reductase-encoding gene lxr3, which connects the D-xylose and L-arabinose catabolic pathways, had no effect on xylanase induction. Besides the induction by D-xylose, the T. reesei xylanases were also induced by L-arabinose, and this induction was also enhanced in knockout mutants in L-arabinose reductase (xyl1), L-arabitol dehydrogenase (lad1), and L-xylulose reductase (lxr3). Induction by L-arabinose was also XYR1 dependent. Analysis of intracellular polyols revealed accumulation of xylitol in all strains only during incubation with D-xylose and accumulation of L-arabitol only during incubation with L-arabinose. Induction by L-arabinose could be further stimulated by addition of D-xylose. We conclude that the expression of the T. reesei xylanases can be induced by both D-xylose and L-arabinose, but independently of each other and by using different inducing metabolites.
引用
收藏
页码:390 / 398
页数:9
相关论文
共 45 条
[11]   Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina [J].
Kubicek, Christian P. ;
Mikus, Marianna ;
Schuster, Andre ;
Schmoll, Monika ;
Seiboth, Bernhard .
BIOTECHNOLOGY FOR BIOFUELS, 2009, 2
[12]  
Kumar S, 2000, MOL EVOLUTION PHYLOG
[13]   DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J].
Librado, P. ;
Rozas, J. .
BIOINFORMATICS, 2009, 25 (11) :1451-1452
[14]   Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei [J].
Mach, RL ;
Strauss, J ;
Zeilinger, S ;
Schindler, M ;
Kubicek, CP .
MOLECULAR MICROBIOLOGY, 1996, 21 (06) :1273-1281
[15]   Transcriptional Regulation of xyr1, Encoding the Main Regulator of the Xylanolytic and Cellulolytic Enzyme System in Hypocrea jecorina [J].
Mach-Aigner, Astrid R. ;
Pucher, Marion E. ;
Steiger, Matthias G. ;
Bauer, Gudrun E. ;
Preis, Sonja J. ;
Mach, Robert L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (21) :6554-6562
[16]   D-Xylose Concentration-Dependent Hydrolase Expression Profiles and the Function of CreA and XlnR in Aspergillus niger [J].
Mach-Aigner, Astrid R. ;
Omony, Jimmy ;
Jovanovic, Birgit ;
van Boxtel, Anton J. B. ;
de Graaff, Leo H. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (09) :3145-3155
[17]   L-Arabitol Is the Actual Inducer of Xylanase Expression in Hypocrea jecorina (Trichoderma reesei) [J].
Mach-Aigner, Astrid R. ;
Gudynaite-Savitch, Loreta ;
Mach, Robert L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (17) :5988-5994
[18]   D-Xylose as a Repressor or Inducer of Xylanase Expression in Hypocrea jecorina (Trichoderma reesei) [J].
Mach-Aigner, Astrid R. ;
Pucher, Marion E. ;
Mach, Robert L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (06) :1770-1776
[19]  
MANDELS M, 1978, PROCESS BIOCHEM, V13, P6
[20]   ENHANCED CELLULASE PRODUCTION BY A MUTANT OF TRICHODERMA-VIRIDE [J].
MANDELS, M ;
WEBER, J ;
PARIZEK, R .
APPLIED MICROBIOLOGY, 1971, 21 (01) :152-&