The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces

被引:12
作者
Liu, Yong-Jin [1 ]
Tang, Kai [2 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Voronoi diagram; Triangulated surfaces; Combinatorial complexity; Computational geometry;
D O I
10.1016/j.ipl.2012.12.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the combinatorial complexity of Voronoi diagram of point sites on a general triangulated 2-manifold surface, based on the geodesic metric. Given a triangulated 2-manifold T of n faces and a set of m point sites S = {s(1), s(2), ... , s(m)} is an element of T, we prove that the complexity of Voronoi diagram V-T(S) of S on T is O(mn) if the genus of T is zero. For a genus-g manifold T in which the samples in S are dense enough and the resulting Voronoi diagram satisfies the closed ball property, we prove that the complexity of Voronoi diagram V-T(S) is O((M + g)n). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 136
页数:5
相关论文
共 10 条
[1]  
Aronov B, 2008, LECT NOTES COMPUT SC, V5193, P100, DOI 10.1007/978-3-540-87744-8_9
[2]   Higher-order Voronoi diagrams on triangulated surfaces [J].
Cabello, S. ;
Fort, M. ;
Sellares, J. A. .
INFORMATION PROCESSING LETTERS, 2009, 109 (09) :440-445
[3]   Surface sampling and the intrinsic Voronoi diagram [J].
Dyer, Ramsay ;
Zhang, Hao ;
Moller, Torsten .
COMPUTER GRAPHICS FORUM, 2008, 27 (05) :1393-1402
[4]  
Edelsbrunner H., 1994, Proceedings of the Tenth Annual Symposium on Computational Geometry, P285, DOI 10.1145/177424.178010
[5]   SIMULATION OF SIMPLICITY - A TECHNIQUE TO COPE WITH DEGENERATE CASES IN GEOMETRIC ALGORITHMS [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (01) :66-104
[6]  
Gong W.Y., 2011, 2011 8 INT S VOR DIA, P15
[7]   Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures [J].
Liu, Yong-Jin .
COMPUTER-AIDED DESIGN, 2013, 45 (03) :695-704
[8]   Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces [J].
Liu, Yong-Jin ;
Chen, Zhan-Qing ;
Tang, Kai .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1502-1517
[9]   THE DISCRETE GEODESIC PROBLEM [J].
MITCHELL, JSB ;
MOUNT, DM ;
PAPADIMITRIOU, CH .
SIAM JOURNAL ON COMPUTING, 1987, 16 (04) :647-668
[10]  
Moet E., 2006, Proceedings of the Twenty-Second Annual Symposium on Computational Geometry (SCG'06), P177, DOI 10.1145/1137856.1137885