Gate-defined quantum confinement in suspended bilayer graphene

被引:149
作者
Allen, M. T. [1 ]
Martin, J. [1 ]
Yacoby, A. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
BROKEN-SYMMETRY STATES; RESONATORS; BANDGAP; SPIN;
D O I
10.1038/ncomms1945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall nu=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Electrically tunable fine structure of negatively charged excitons in gated bilayer graphene quantum dots [J].
Sadecka, Katarzyna ;
Saleem, Yasser ;
Miravet, Daniel ;
Albert, Matthew ;
Korkusinski, Marek ;
Bester, Gabriel ;
Hawrylak, Pawel .
PHYSICAL REVIEW B, 2024, 109 (08)
[32]   Gate-independent energy gap in noncovalently intercalated bilayer graphene on SiC(0001) [J].
Li, Yuanchang .
PHYSICAL REVIEW B, 2016, 94 (24)
[33]   Tailoring 10 nm Scale Suspended Graphene Junctions and Quantum Dots [J].
Tayari, Vahid ;
McRae, Andrew C. ;
Yigen, Serap ;
Island, Joshua O. ;
Porter, James M. ;
Champagne, Alexandre R. .
NANO LETTERS, 2015, 15 (01) :114-119
[34]   Fractional Quantum Hall States in Bilayer Graphene Probed by Transconductance Fluctuations [J].
Kim, Youngwook ;
Lee, Dong Su ;
Jung, Suyong ;
Skakalova, Viera ;
Taniguchi, T. ;
Watanabe, K. ;
Kim, Jun Sung ;
Smet, Jurgen H. .
NANO LETTERS, 2015, 15 (11) :7445-7451
[35]   Proposal for realizing the quantum spin Hall phase in a gapped graphene bilayer [J].
Zhai, Xuechao ;
Jin, Guojun .
PHYSICAL REVIEW B, 2016, 93 (20)
[36]   Absence of heat flow in ν=0 quantum Hall ferromagnet in bilayer graphene [J].
Kumar, Ravi ;
Srivastav, Saurabh Kumar ;
Roy, Ujjal ;
Singhal, Ujjawal ;
Watanabe, K. ;
Taniguchi, T. ;
Singh, Vibhor ;
Roulleau, P. ;
Das, Anindya .
NATURE PHYSICS, 2024, 20 (12) :1941-1947
[37]   Broken-Symmetry Quantum Hall States in Twisted Bilayer Graphene [J].
Kim, Youngwook ;
Park, Jaesung ;
Song, Intek ;
Ok, Jong Mok ;
Jo, Younjung ;
Watanabe, Kenji ;
Taniquchi, Takashi ;
Choi, Hee Cheul ;
Lee, Dong Su ;
Jung, Suyong ;
Kim, Jun Sung .
SCIENTIFIC REPORTS, 2016, 6
[38]   Identifying Pauli blockade regimes in bilayer graphene double quantum dots [J].
Mukherjee, Ankan ;
Muralidharan, Bhaskaran .
2D MATERIALS, 2023, 10 (03)
[39]   Even-denominator fractional quantum Hall state in bilayer graphene [J].
Li Qing-Xin ;
Huang Yan ;
Chen Yi-Wei ;
Zhu Yu-Jian ;
Zhu Wang ;
Song Jun-Wei ;
An Dong-Dong ;
Gan Qi-Kang ;
Wang Kai-Yuan ;
Wang Hao-Lin ;
Mai Zhi-Hong ;
Andy Shen ;
Xi Chuan-Ying ;
Zhang Jing-Lei ;
Yu Ge-Liang ;
Wang Lei .
ACTA PHYSICA SINICA, 2022, 71 (18)
[40]   Counting statistics of single electron transport in bilayer graphene quantum dots [J].
Garreis, Rebekka ;
Gerber, Jonas Daniel ;
Stara, Veronika ;
Tong, Chuyao ;
Gold, Carolin ;
Roosli, Marc ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Ensslin, Klaus ;
Ihn, Thomas ;
Kurzmann, Annika .
PHYSICAL REVIEW RESEARCH, 2023, 5 (01)