Gate-defined quantum confinement in suspended bilayer graphene

被引:150
作者
Allen, M. T. [1 ]
Martin, J. [1 ]
Yacoby, A. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
BROKEN-SYMMETRY STATES; RESONATORS; BANDGAP; SPIN;
D O I
10.1038/ncomms1945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall nu=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Charge Detection in Gate-Defined Bilayer Graphene Quantum Dots [J].
Kurzmann, Annika ;
Overweg, Hiske ;
Eich, Marius ;
Pally, Alessia ;
Rickhaus, Peter ;
Pisoni, Riccardo ;
Lee, Yongjin ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Ihn, Thomas ;
Ensslin, Klaus .
NANO LETTERS, 2019, 19 (08) :5216-5221
[2]   Gate-Defined Electron Interferometer in Bilayer Graphene [J].
Iwakiri, Shuichi ;
de Vries, Folkert K. ;
Portoles, Elias ;
Zheng, Giulia ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Ihn, Thomas ;
Ensslin, Klaus .
NANO LETTERS, 2022, 22 (15) :6292-6297
[3]   RFSoC-based radio-frequency reflectometry in gate-defined bilayer graphene quantum devices [J].
Shinozaki, Motoya ;
Johmen, Tomoya ;
Hosaka, Aruto ;
Seo, Takumi ;
Yashima, Shunsuke ;
Shirachi, Akitomi ;
Noro, Kosuke ;
Sato, Shoichi ;
Kumasaka, Takeshi ;
Yoshida, Tsuyoshi ;
Otsuka, Tomohiro .
APPLIED PHYSICS EXPRESS, 2025, 18 (07)
[4]   Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon [J].
Mi, X. ;
Cady, J. V. ;
Zajac, D. M. ;
Stehlik, J. ;
Edge, L. F. ;
Petta, J. R. .
APPLIED PHYSICS LETTERS, 2017, 110 (04)
[5]   Surface Gate-Defined Quantum Dots in MoS2 with Bi Contacts [J].
Tataka, Riku ;
Sharma, Alka ;
Shinozaki, Motoya ;
Johmen, Tomoya ;
Kumasaka, Takeshi ;
Chen, Yong P. ;
Otsuka, Tomohiro .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (09)
[6]   Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots [J].
Tajiri, T. ;
Sakai, Y. ;
Kuruma, K. ;
Ji, S. M. ;
Kiyama, H. ;
Oiwa, A. ;
Ritzmann, J. ;
Ludwig, A. ;
Wieck, A. D. ;
Ota, Y. ;
Arakawa, Y. ;
Iwamoto, S. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SG)
[7]   Gate-defined quantum-dot devices realized in InGaAs/InP by incorporating a HfO2 layer as gate dielectric [J].
Sun, Jie ;
Larsson, Marcus ;
Maximov, Ivan ;
Hardtdegen, Hilde ;
Xu, H. Q. .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[8]   Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator [J].
Stockklauser, A. ;
Scarlino, P. ;
Koski, J. V. ;
Gasparinetti, S. ;
Andersen, C. K. ;
Reichl, C. ;
Wegscheider, W. ;
Ihn, T. ;
Ensslin, K. ;
Wallraff, A. .
PHYSICAL REVIEW X, 2017, 7 (01)
[9]   Observation of Even Denominator Fractional Quantum Hall Effect in Suspended Bilayer Graphene [J].
Ki, Dong-Keun ;
Fal'ko, Vladimir I. ;
Abanin, Dmitry A. ;
Morpurgo, Alberto F. .
NANO LETTERS, 2014, 14 (04) :2135-2139
[10]   Numerical analysis of photon absorption of gate-defined quantum dots embedded in asymmetric bull's-eye optical cavities [J].
Ji, Sangmin ;
Iwamoto, Satoshi .
OPTICS CONTINUUM, 2023, 2 (11) :2270-2279