Gate-defined quantum confinement in suspended bilayer graphene

被引:143
|
作者
Allen, M. T. [1 ]
Martin, J. [1 ]
Yacoby, A. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
关键词
BROKEN-SYMMETRY STATES; RESONATORS; BANDGAP; SPIN;
D O I
10.1038/ncomms1945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall nu=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Gate-defined quantum confinement in suspended bilayer graphene
    M. T. Allen
    J. Martin
    A. Yacoby
    Nature Communications, 3
  • [2] Electron confinement in graphene with gate-defined quantum dots
    Fehske, Holger
    Hager, Georg
    Pieper, Andreas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1868 - 1871
  • [3] Charge Detection in Gate-Defined Bilayer Graphene Quantum Dots
    Kurzmann, Annika
    Overweg, Hiske
    Eich, Marius
    Pally, Alessia
    Rickhaus, Peter
    Pisoni, Riccardo
    Lee, Yongjin
    Watanabe, Kenji
    Taniguchi, Takashi
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2019, 19 (08) : 5216 - 5221
  • [4] Gate-Defined Electron Interferometer in Bilayer Graphene
    Iwakiri, Shuichi
    de Vries, Folkert K.
    Portoles, Elias
    Zheng, Giulia
    Taniguchi, Takashi
    Watanabe, Kenji
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2022, 22 (15) : 6292 - 6297
  • [5] Spin and Valley States in Gate-Defined Bilayer Graphene Quantum Dots
    Eich, Marius
    Pisoni, Riccardo
    Overweg, Hiske
    Kurzmann, Annika
    Lee, Yongjin
    Rickhaus, Peter
    Ihn, Thomas
    Ensslin, Klaus
    Herman, Frantisek
    Sigrist, Manfred
    Watanabe, Kenji
    Taniguchi, Takashi
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [6] Gate-Defined Confinement in Bilayer Graphene-Hexagonal Boron Nitride Hybrid Devices
    Goossens, Augustinus M.
    Driessen, Stefanie C. M.
    Baart, Tim A.
    Watanabe, Kenji
    Taniguchi, Takashi
    Vandersypen, Lieven M. K.
    NANO LETTERS, 2012, 12 (09) : 4656 - 4660
  • [7] Specular Electron Focusing between Gate-Defined Quantum Point Contacts in Bilayer Graphene
    Ingla-Aynes, Josep
    Manesco, Antonio L. R.
    Ghiasi, Talieh S. S.
    Volosheniuk, Serhii
    Watanabe, Kenji
    Taniguchi, Takashi
    van der Zant, Herre S. J.
    NANO LETTERS, 2023, 23 (12) : 5453 - 5459
  • [8] Gate-Defined Topological Josephson Junctions in Bernal Bilayer Graphene
    Xie Y.-M.
    Lantagne-Hurtubise É.
    Young A.F.
    Nadj-Perge S.
    Alicea J.
    Physical Review Letters, 2023, 131 (14)
  • [9] Coherent Jetting from a Gate-Defined Channel in Bilayer Graphene
    Gold, Carolin
    Knothe, Angelika
    Kurzmann, Annika
    Garcia-Ruiz, Aitor
    Watanabe, Kenji
    Taniguchi, Takashi
    Fal'ko, Vladimir
    Ensslin, Klaus
    Ihn, Thomas
    PHYSICAL REVIEW LETTERS, 2021, 127 (04)
  • [10] Semimetallic features in quantum transport through a gate-defined point contact in bilayer graphene
    Lane, T. L. M.
    Knothe, A.
    Fal'ko, V., I
    PHYSICAL REVIEW B, 2019, 100 (11)