Higher derivations on Lie ideals of triangular algebras

被引:0
作者
Han, D. [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Peoples R China
关键词
admissible Lie ideal; triangular algebra; higher derivation; Jordan (triple) higher derivation; RINGS;
D O I
10.1134/S0037446612060079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a triangular algebra and let U be an admissible Lie ideal of T. We mainly consider the question whether each Jordan higher derivation of U into T is a higher derivation of U into T. We also give some characterizations for the Jordan triple higher derivations of U.
引用
收藏
页码:1029 / 1036
页数:8
相关论文
共 13 条
[1]  
Ashraf M, 2010, INT ELECTRON J ALGEB, V8, P65
[3]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[4]  
CHASE SU, 1961, NAGOYA MATH J, V0018, P00013
[5]  
Cortes W., 2005, Turkish J. Math, V29, P1
[6]  
Ferrero M., 2002, QUAEST MATH, V25, P249, DOI DOI 10.2989/16073600209486012
[7]  
Haetinger C., 2002, TEMA-TEND MAT APL CO, V3, P141
[8]   Study of formal triangular matrix rings [J].
Haghany, A ;
Varadarajan, K .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (11) :5507-5525
[9]   HEREDITARY SEMI-PRIMARY RINGS AND TRI-ANGULAR MATRIX RINGS [J].
HARADA, M .
NAGOYA MATHEMATICAL JOURNAL, 1966, 27 (02) :463-&
[10]  
Jung YS, 2005, INDIAN J PURE AP MAT, V36, P513