Identification and nonlinearity compensation of hysteresis using NARX models

被引:8
|
作者
Abreu, Petrus E. O. G. B. [1 ]
Tavares, Lucas A. [1 ]
Teixeira, Bruno O. S. [2 ]
Aguirre, Luis A. [2 ]
机构
[1] Univ Fed Minas Gerais, Grad Program Elect Engn, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Elect Engn, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Hysteresis; Gray-box identification; Compensation of nonlinearities; NARX model; OUTPUT PARAMETRIC MODELS; STEADY-STATE PERFORMANCE; NON-LINEAR SYSTEMS; POLYNOMIAL-MODELS; ADAPTIVE-CONTROL; SELECTION;
D O I
10.1007/s11071-020-05936-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper deals with two problems: the identification and compensation of hysteresis nonlinearity in dynamical systems using nonlinear polynomial autoregressive models with exogenous inputs (NARX). First, based on gray-box identification techniques, some constraints on the structure and parameters of NARX models are proposed to ensure that the identified models display a key feature of hysteresis. In addition, a more general framework is developed to explain how hysteresis occurs in such models. Second, two strategies to design hysteresis compensators are presented. In one strategy, the compensation law is obtained through simple algebraic manipulations performed on the identified models. In the second strategy, the compensation law is directly identified from the data. Both numerical and experimental results are presented to illustrate the efficiency of the proposed procedures. Also, it has been found that the compensators based on gray-box models outperform the cases with models identified using black-box techniques.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 50 条
  • [1] Identification and nonlinearity compensation of hysteresis using NARX models
    Petrus E. O. G. B. Abreu
    Lucas A. Tavares
    Bruno O. S. Teixeira
    Luis A. Aguirre
    Nonlinear Dynamics, 2020, 102 : 285 - 301
  • [2] Modeling, identification and compensation of hysteresis nonlinearity for a piezoelectric nano-manipulator
    Zhang, Yangming
    Yan, Peng
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (07) : 907 - 922
  • [3] Identification and compensation of Preisach hysteresis models for magnetostrictive actuators
    Natale, C
    Velardi, F
    Visone, C
    PHYSICA B-CONDENSED MATTER, 2001, 306 (1-4) : 161 - 165
  • [4] Identification of Nonlinear Wave Forces Using Gaussian Process NARX Models
    Worden, K.
    Rogers, T.
    Cross, E. J.
    NONLINEAR DYNAMICS, VOL 1, 2017, : 203 - 221
  • [5] Compensation for hysteresis using bivariate Preisach models
    Galinaitis, WS
    Rogers, RC
    MATHEMATICS AND CONTROL IN SMART STRUCTURES - SMART STRUCTURES AND MATERIALS 1997, 1997, 3039 : 538 - 547
  • [6] Identification of robotic systems with hysteresis using Nonlinear AutoRegressive eXogenous input models
    Zhang, Wanxin
    Zhu, Jihong
    Gu, Dongbing
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (03): : 1 - 10
  • [7] Forecasting peak air pollution levels using NARX models
    Pisoni, Enrico
    Farina, Marcello
    Carnevale, Claudio
    Piroddi, Luigi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (4-5) : 593 - 602
  • [8] Sparse Bayesian Identification of Polynomial NARX Models
    Jacobs, William R.
    Baldacchino, Tara
    Anderson, Sean R.
    IFAC PAPERSONLINE, 2015, 48 (28): : 172 - 177
  • [9] Consistent identification of NARX models via regularization networks
    De Nicolao, G
    Trecate, GF
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) : 2045 - 2049
  • [10] Online Hysteresis Identification and Compensation for Piezoelectric Actuators
    Liu, Yanfang
    Wang, Yan
    Chen, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (07) : 5595 - 5603