Quantum Optimization of Fully Connected Spin Glasses

被引:149
作者
Venturelli, Davide [1 ,2 ]
Mandra, Salvatore [1 ,3 ]
Knysh, Sergey [1 ,4 ]
O'Gorman, Bryan [1 ]
Biswas, Rupak [1 ]
Smelyanskiy, Vadim [5 ]
机构
[1] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[2] USRA, Res Inst Adv Comp Sci, Mountain View, CA 94043 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02139 USA
[4] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA
[5] Google, Venice, CA 90291 USA
来源
PHYSICAL REVIEW X | 2015年 / 5卷 / 03期
关键词
Computational Physics; Condensed Matter Physics; Quantum Physics;
D O I
10.1103/PhysRevX.5.031040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random +/- 1 couplings is programmed on the D-Wave Two (TM) annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Consistency tests of classical and quantum models for a quantum annealer [J].
Albash, Tameem ;
Vinci, Walter ;
Mishra, Anurag ;
Warburton, Paul A. ;
Lidar, Daniel A. .
PHYSICAL REVIEW A, 2015, 91 (04)
[2]  
[Anonymous], ARXIV09051629
[3]  
[Anonymous], ARXIV14114036
[4]   SEARCH FOR A TRANSITION IN THE 3-DIMENSIONAL +/- J ISING SPIN-GLASS [J].
BHATT, RN ;
YOUNG, AP .
PHYSICAL REVIEW LETTERS, 1985, 54 (09) :924-927
[5]   Experimental Determination of Ramsey Numbers [J].
Bian, Zhengbing ;
Chudak, Fabian ;
Macready, William G. ;
Clark, Lane ;
Gaitan, Frank .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[6]   Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses [J].
Billoire, A. ;
Fernandez, L. A. ;
Maiorano, A. ;
Marinari, E. ;
Martin-Mayor, V. ;
Yllanes, D. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[7]  
Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]
[8]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781
[9]   Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor [J].
Bunyk, Paul I. ;
Hoskinson, Emile M. ;
Johnson, Mark W. ;
Tolkacheva, Elena ;
Altomare, Fabio ;
Berkley, Andrew J. ;
Harris, Richard ;
Hilton, Jeremy P. ;
Lanting, Trevor ;
Przybysz, Anthony J. ;
Whittaker, Jed .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (04)
[10]  
Cai J., ARXIV14062741