Involvement of BrNAC041 in ABA-GA antagonism in the leaf senescence of Chinese flowering cabbage

被引:26
作者
Fan, Zhong-qi [1 ,3 ]
Tan, Xiao-li [1 ,2 ]
Shan, Wei [1 ,2 ]
Kuang, Jian-fei [1 ,2 ]
Lu, Wang-jin [1 ,2 ]
Lin, He-tong [3 ]
Su, Xin-guo [4 ]
Lakshmanan, Prakash [5 ,6 ,7 ,8 ]
Zhao, Ming-lei [1 ,2 ]
Chen, Jian-ye [1 ,2 ]
机构
[1] South China Agr Univ, Coll Hort,Guangdong Prov Key Lab Postharvest Sci, Engn Res Ctr Southern Hort Prod Preservat,Guangdo, Minist Educ,State Key Lab Conservat & Utilizat Su, Guangzhou 510642, Peoples R China
[2] Lingnan Guangdong Lab Modern Agr, Guangzhou 510642, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Food Sci, Key Lab Postharvest Biol Subtrop Special Agr Prod, Inst Postharvest Technol Agr Prod, Fuzhou 350002, Fujian, Peoples R China
[4] Guangdong AIB Polytech, Guangzhou 510507, Peoples R China
[5] Southwest Univ, Coll Resources & Environm, Interdisciplinary Res Ctr Agr Green Dev Yangtze R, Chongqing 400715, Peoples R China
[6] Guangxi Acad Agr Sci, Key Lab Sugarcane Biotechnol & Genet Improvement, Minist Agr, Nanning 530007, Peoples R China
[7] Guangxi Acad Agr Sci, Guangxi Key Lab Sugarcane Genet Improvement, Sugarcane Res Inst, Nanning 530007, Peoples R China
[8] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia
基金
中国国家自然科学基金;
关键词
Chinese flowering cabbage; ABA; GA; Leaf senescence; NAC; NAC TRANSCRIPTION FACTOR; ABSCISIC-ACID; CHLOROPHYLL DEGRADATION; REGULATORY NETWORK; EXPRESSION; STRESS; IDENTIFICATION; BIOSYNTHESIS; GIBBERELLINS; GENES;
D O I
10.1016/j.postharvbio.2020.111254
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Phytohormone abscisic acid (ABA) and gibberellins (GAs) are well-known to be antagonistic in mediating plant development processes. However, the underlying molecular mechanism of this antagonism in leaf senescence of economically important leafy vegetables is largely unclear. In this study, we report that a Chinese flowering cabbage NAC transcription factor BrNAC041, mediated the ABA-antagonized GA accumulation in ABA-induced leaf senescence. Exogenous ABA treatment accelerated Chinese flowering cabbage leaf senescence, with de-creasing maximum quantum yield (Fv/Fm) and total chlorophyll content, as well as up-regulating the expressions of senescence-associated genes. Notably, ABA treatment enhanced endogenous ABA accumulation and reduced GA3 level in senescing leaves. Consistently, down-regulation of one ABA catabolism gene BrCYP707A3 and two GA biosynthesis genes BrKAO2 and BrGA20ox2 was observed following ABA application. Furthermore, a NAC transcription factor, BrNAC041, a homolog of Arabidopsis ANAC041, was isolated and characterized. BrNAC041 was senescence-/ABA-up regulated and localized in the nucleus acting as a transcriptional repressor. Further in vitro and in vivo experiments demonstrated that BrNAC041 repressed BrCYP707A3, BrKAO2 and BrGA20ox2 transcription by targeting their promoters via the NAC-binding sequence (NACBS). Collectively, our findings reveal BrNAC041 as a novel regulator involved in the antagonism of ABA on GA in the leaf senescence of Chinese flowering cabbage, through the transcriptional repression of ABA catabolic and GA biosynthetic genes.
引用
收藏
页数:10
相关论文
共 56 条
[31]   RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose ( Rosa hybrida) petal senescence [J].
Lu, Peitao ;
Zhang, Changqing ;
Liu, Jitao ;
Liu, Xiaowei ;
Jiang, Guimei ;
Jiang, Xinqiang ;
Khan, Muhammad Ali ;
Wang, Liangsheng ;
Hong, Bo ;
Gao, Junping .
PLANT JOURNAL, 2014, 78 (04) :578-590
[32]   The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato [J].
Ma, Xuemin ;
Zhang, Youjun ;
Tureckova, Veronika ;
Xue, Gang-Ping ;
Fernie, Alisdair R. ;
Mueller-Roeber, Bernd ;
Balazadeh, Salma .
PLANT PHYSIOLOGY, 2018, 177 (03) :1286-1302
[33]   A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis [J].
Mao, Chanjuan ;
Lu, Songchong ;
Lv, Bo ;
Zhang, Bin ;
Shen, Jiabin ;
He, Jianmei ;
Luo, Liqiong ;
Xi, Dandan ;
Chen, Xu ;
Ming, Feng .
PLANT PHYSIOLOGY, 2017, 174 (03) :1747-1763
[34]   Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array [J].
Matsui, Akihiro ;
Ishida, Junko ;
Morosawa, Taeko ;
Mochizuki, Yoshiki ;
Kaminuma, Eli ;
Endo, Takaho A. ;
Okamoto, Masanori ;
Nambara, Eiji ;
Nakajima, Maiko ;
Kawashima, Makiko ;
Satou, Masakazu ;
Kim, Jong-Myong ;
Kobayashi, Norio ;
Toyoda, Tetsuro ;
Shinozaki, Kazuo ;
Seki, Motoaki .
PLANT AND CELL PHYSIOLOGY, 2008, 49 (08) :1135-1149
[35]   NAC transcription factors in plant abiotic stress responses [J].
Nakashima, Kazuo ;
Takasaki, Hironori ;
Mizoi, Junya ;
Shinozaki, Kazuo ;
Yamaguchi-Shinozaki, Kazuko .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02) :97-103
[36]   NAC transcription factors: structurally distinct, functionally diverse [J].
Olsen, AN ;
Ernst, HA ;
Lo Leggio, L ;
Skriver, K .
TRENDS IN PLANT SCIENCE, 2005, 10 (02) :79-87
[37]   Biochemical and biological characterization of two Brassicaceae after their commercial expiry date [J].
Ombra, Maria Neve ;
Cozzolino, Autilia ;
Nazzaro, Filomena ;
d'Acierno, Antonio ;
Tremonte, Patrizio ;
Coppola, Raffaele ;
Fratianni, Florinda .
FOOD CHEMISTRY, 2017, 218 :335-340
[38]   NAC proteins: regulation and role in stress tolerance [J].
Puranik, Swati ;
Sahu, Pranav Pankaj ;
Srivastava, Prem S. ;
Prasad, Manoj .
TRENDS IN PLANT SCIENCE, 2012, 17 (06) :369-381
[39]   Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet [J].
Ren, Tingting ;
Wang, Jiawei ;
Zhao, Mingming ;
Gong, Xiaoming ;
Wang, Shuxia ;
Wang, Geng ;
Zhou, Chunjiang .
PLANTA, 2018, 247 (01) :53-68
[40]   pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants [J].
Sainsbury, Frank ;
Thuenemann, Eva C. ;
Lomonossoff, George P. .
PLANT BIOTECHNOLOGY JOURNAL, 2009, 7 (07) :682-693