A Novel Rayleigh Dynamical Model for Remote Sensing Data Interpretation

被引:10
|
作者
Bayer, Fabio M. [1 ,2 ]
Bayer, Debora M. [3 ]
Marinoni, Andrea [4 ]
Gamba, Paolo [5 ]
机构
[1] Univ Fed Santa Maria, Dept Stat, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Santa Maria, LACESM, BR-97105900 Santa Maria, RS, Brazil
[3] Univ Fed Santa Maria, Dept Sanit & Environm Engn, BR-97105900 Santa Maria, RS, Brazil
[4] UiT Arctic Univ Norway, Dept Phys & Technol, NO-9037 Tromso, Norway
[5] Univ Pavia, Dept Elect Comp & Biomed Engn, Telecommun & Remote Sensing Lab, I-27100 Pavia, Italy
来源
关键词
Autoregressive processes; Synthetic aperture radar; Remote sensing; Data models; Wind speed; Feature extraction; Time series analysis; Land-use classification; machine learning; Rayleigh distribution; synthetic aperture radar (SAR); time series; wind speed; WIND-SPEED; TIME-SERIES; CLASSIFICATION; IMAGES; DISTRIBUTIONS; STATISTICS; WEIBULL; KERNEL; AREAS;
D O I
10.1109/TGRS.2020.2971345
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article introduces the Rayleigh autoregressive moving average (RARMA) model, which is useful to interpret multiple different sets of remotely sensed data, from wind measurements to multitemporal synthetic aperture radar (SAR) sequences. The RARMA model is indeed suitable for continuous, asymmetric, and nonnegative signals observed over time. It describes the mean of Rayleigh-distributed discrete-time signals by a dynamic structure including autoregressive (AR) and moving average (MA) terms, a set of regressors, and a link function. After presenting the conditional likelihood inference for the model parameters and the detection theory, in this article, a Monte Carlo simulation is performed to evaluate the finite signal length performance of the conditional likelihood inferences. Finally, the new model is applied first to sequences of wind speed measurements, and then to a multitemporal SAR image stack for land-use classification purposes. The results in these two test cases illustrate the usefulness of this novel dynamic model for remote sensing data interpretation.
引用
收藏
页码:4989 / 4999
页数:11
相关论文
共 50 条
  • [1] A novel decision support system for the interpretation of remote sensing big data
    Boulila, Wadii
    Farah, Imed Riadh
    Hussain, Amir
    EARTH SCIENCE INFORMATICS, 2018, 11 (01) : 31 - 45
  • [2] A novel decision support system for the interpretation of remote sensing big data
    Wadii Boulila
    Imed Riadh Farah
    Amir Hussain
    Earth Science Informatics, 2018, 11 : 31 - 45
  • [3] Interpretation of remote sensing data with shmatrix method
    Petrov, D. V.
    Shkuratov, Yu. G.
    METEORITICS & PLANETARY SCIENCE, 2008, 43 (07) : A128 - A128
  • [4] Remote sensing data interpretation using knowledge engineering
    Ekechukwu, B
    ADVANCES IN INTELLIGENT SYSTEMS: THEORY AND APPLICATIONS, 2000, 59 : 147 - 152
  • [5] A Framework for Interactive Visual Interpretation of Remote Sensing Data
    Karmakar, Chandrabali
    Datcu, Mihai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] THE INFLUENCE OF THE TIME EQUATION ON REMOTE SENSING DATA INTERPRETATION
    Fichtelmann, B.
    Borg, E.
    Schwarz, E.
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 195 - 201
  • [7] Distributed Deep Learning for Remote Sensing Data Interpretation
    Haut, Juan M.
    Paoletti, Mercedes E.
    Moreno-Alvarez, Sergio
    Plaza, Javier
    Rico-Gallego, Juan-Antonio
    Plaza, Antonio
    PROCEEDINGS OF THE IEEE, 2021, 109 (08) : 1320 - 1349
  • [8] A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes
    Kutser, T
    Herlevi, A
    Kallio, K
    Arst, H
    SCIENCE OF THE TOTAL ENVIRONMENT, 2001, 268 (1-3) : 47 - 58
  • [9] Assessment for Remote Sensing Data: Accuracy of Interactive Data Quality Interpretation
    Borg, Erik
    Fichtelmann, Bernd
    Asche, Hartmut
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT II, 2011, 6783 : 366 - 375
  • [10] A Novel Dynamical Framework for Crop Phenology Estimation With Remote Sensing
    Mascolo, Lucio
    Martinez-Marin, Tomas
    Lopez-Sanchez, Juan M.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 2208 - 2225