A UNIFIED MODEL FOR IMPROVING DEPTH ACCURACY IN KINECT SENSOR

被引:0
作者
Peng, Li [1 ,2 ,3 ]
Zhang, Yanduo [3 ]
Zhou, Huabing [3 ]
Chen, Deng [3 ]
Yu, Zhenghong [4 ]
Jiang, Junjun [5 ]
Ma, Jiayi [6 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China
[2] HuBei Radio & TV Univ, Wuhan, Hubei, Peoples R China
[3] Wuhan Inst Technol, Wuhan, Hubei, Peoples R China
[4] Guangdong Polytech Sci & Technol, Guangzhou, Guangdong, Peoples R China
[5] China Univ Geosci, Wuhan, Hubei, Peoples R China
[6] Wuhan Univ, Wuhan, Hubei, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2017年
基金
中国国家自然科学基金;
关键词
Depth accuracy; Kinect; registration; L2E estimator; ROBUST; TRANSFORMATION; CALIBRATION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Microsoft Kinect sensor has been widely used in many applications, but it suffers from the drawback of low depth accuracy. In this paper, we present a unified depth modification model to improve the Kinect depth accuracy by registering depth and color images in an iterative manner. Specifically, in each iteration, we first establish a coarse correspondence based on the feature descriptor of the canny edge. Then, we estimate the fine correspondence using a robust estimator called the L2E with the nonparametric model. Finally, we correct the depth data according to the correspondence results. In order to evaluate the effectiveness of our approach, we have performed extensive experiments and then analyzed the experimental results from the following respects: the accuracy of depth data, the accuracy of correspondence between color and depth images as well as the measurement error in the 3D reconstruction by our method. The experimental results show that our approach greatly improves the depth accuracy.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 27 条
[1]  
Cao X, 2012, INT CONF ACOUST SPEE, P5445, DOI 10.1109/ICASSP.2012.6289153
[2]  
Dong HW, 2014, IEEE INT C INT ROBOT, P1796, DOI 10.1109/IROS.2014.6942798
[3]  
Herrera D, 2011, LECT NOTES COMPUT SC, V6855, P437, DOI 10.1007/978-3-642-23678-5_52
[4]   Joint Depth and Color Camera Calibration with Distortion Correction [J].
Herrera, Daniel C. ;
Kannala, Juho ;
Heikkila, Janne .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (10) :2058-2064
[5]  
Ma J., 2016, IEEE T POWER SYST, P1
[6]  
Ma JY, 2017, AAAI CONF ARTIF INTE, P4218
[7]   Robust Feature Matching for Remote Sensing Image Registration via Locally Linear Transforming [J].
Ma, Jiayi ;
Zhou, Huabing ;
Zhao, Ji ;
Gao, Yuan ;
Jiang, Junjun ;
Tian, Jinwen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12) :6469-6481
[8]   Robust L2E Estimation of Transformation for Non-Rigid Registration [J].
Ma, Jiayi ;
Qiu, Weichao ;
Zhao, Ji ;
Ma, Yong ;
Yuille, Alan L. ;
Tu, Zhuowen .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (05) :1115-1129
[9]   Robust Point Matching via Vector Field Consensus [J].
Ma, Jiayi ;
Zhao, Ji ;
Tian, Jinwen ;
Yuille, Alan L. ;
Tu, Zhuowen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) :1706-1721
[10]   Robust Estimation of Nonrigid Transformation for Point Set Registration [J].
Ma, Jiayi ;
Zhao, Ji ;
Tian, Jinwen ;
Tu, Zhuowen ;
Yuille, Alan L. .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :2147-2154