共 55 条
Electronically-Coupled Phase Boundaries in α-Fe2O3/Fe3O4 Nanocomposite Photoanodes for Enhanced Water Oxidation
被引:38
作者:
Leduc, Jennifer
[1
]
Goenuellue, Yakup
[1
]
Ghamgosar, Pedram
[2
]
You, Shujie
[2
]
Mouzon, Johanne
[2
]
Choi, Heechae
[1
]
Vomiero, Alberto
[2
]
Grosch, Matthias
[1
]
Mathur, Sanjay
[1
]
机构:
[1] Univ Cologne, Inst Inorgan Chem, D-50939 Cologne, Germany
[2] Lulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, S-97187 Lulea, Sweden
基金:
欧盟地平线“2020”;
关键词:
solar water splitting;
valence dynamics;
magnetite;
Raman;
single-source CVD;
heterostructures;
IRON-OXIDE FILMS;
GENERALIZED GRADIENT APPROXIMATION;
TOTAL-ENERGY CALCULATIONS;
OXYGEN VACANCIES;
HEMATITE PHOTOANODE;
ULTRATHIN FILMS;
SURFACE-STATES;
EVOLUTION;
ACTIVATION;
EFFICIENCY;
D O I:
10.1021/acsanm.8b01936
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Photoelectrochemical (PEC) water splitting reactions are promising for sustainable hydrogen production from renewable sources. We report here, the preparation of alpha-Fe2O3/Fe3O4 composite films via a single-step chemical vapor deposition of [Fe((OBu)-Bu-t)(3)](2) and their use as efficient photoanode materials in PEC setups. Film thickness and phase segregation was controlled by varying the deposition time and corroborated through cross-section Raman spectroscopy and scanning electron microscopy. The highest water oxidation activity (0.48 mA/cm(2) at 1.23 V vs RHE) using intermittent AM 1.5 G (100 mW/cm(2)) standard illumination was found for hybrid films with a thickness of 11 mu m. This phenomenon is attributed to an improved electron transport resulting from a higher magnetite content toward the substrate interface and an increased light absorption due to the hematite layer mainly located at the top surface of the film. The observed high efficiency of alpha-Fe2O3/Fe3O4 nanocomposite photoanodes is attributed to the close proximity and establishment of 3D interfaces between the weakly ferro- (Fe2O3) and ferrimagnetic (Fe3O4) oxides, which in view of their differential chemical constitution and valence states of Fe ions (Fe2+/Fe3+) can enhance the charge separation and thus the overall electrical conductivity of the layer.
引用
收藏
页码:334 / 342
页数:17
相关论文