共 50 条
Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution
被引:158
|作者:
Yi, Ting-Feng
[1
]
Liu, Haiping
[2
]
Zhu, Yan-Rong
[1
]
Jiang, Li-Juan
[1
]
Xie, Ying
[3
]
Zhu, Rong-Sun
[1
]
机构:
[1] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243002, Anhui, Peoples R China
[2] Harbin Inst Technol, Sch Marine Sci & Technol, Weihai 264209, Shandong, Peoples R China
[3] Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150080, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Lithium-ion battery;
Anode;
Spinel lithium titanium oxide;
Zinc doping;
Rate performance;
LITHIUM-ION BATTERY;
ANODE MATERIAL;
ELECTROCHEMICAL PERFORMANCE;
SPINEL LI4TI5O12;
GEL ELECTROLYTE;
CATHODE;
INTERCALATION;
SPECTROSCOPY;
IMPEDANCE;
TITANATE;
D O I:
10.1016/j.jpowsour.2012.04.080
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Microscale Li4Ti5-xZnxO12 (0 <= x <= 0.2) particles with high phase purity were synthesized by a simple solid-state reaction. The effect of the zinc doping on the physicochemical properties of Li4Ti5O12 (LTO) was extensively studied by TG-DSC, XRD, Raman spectroscopy, SEM, CV, EIS, and galvanostatic charge discharge testing. The crystallization of lithium titanate oxide forms at about 750 degrees C. The lattice parameter of the Zn-doped LTO samples is slightly smaller than that for the pure LTO samples, and zinc doping does not change the basic Li4Ti5O12 structure. Even though the material has a particle size of 1-2 mu m, Zn-doped LTO shows very high excellent capacity retention between 0 and 2.5 V. Especially, in rate performance, the Li4Ti4.8Zn0.2O12 sample maintains capacity of about 180 mAh g(-1) until 5 C rates after 200 cycles, while the pure LTO sample shows severe capacity decline at corresponding rates. The reason for the high rate performance of Zn-doped LTO anode is ascertained to the diffusion coefficient (D-Li) and reversible intercalation and deintercalation of lithium ion. The superior cycling performance and wide discharge voltage range, as well as simple synthesis route and low synthesis cost of the Zn-doped LTO are expected to show a potential commercial application. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 265
页数:8
相关论文