Proper holomorphic maps in harmonic map theory

被引:2
作者
Barletta, Elisabetta [1 ]
Dragomir, Sorin [1 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat & Econ, I-85100 Potenza, Italy
关键词
Proper holomorphic map; Subelliptic harmonic map; CR degree; RIEMANNIAN-MANIFOLDS; CR MANIFOLDS; MAPPINGS; SPHERES;
D O I
10.1007/s10231-014-0429-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine all proper holomorphic maps of balls B-2 -> B-3 admitting a C-3 extension up to the boundary of B-2 and whose boundary values S-3 -> S-5 are subelliptic harmonic maps (in the sense of Jost and Xu in Trans Am Math Soc 350(11): 4633-4649, 1998). A new numerical CR invariant, the CR degree of a CR map of spheres S2n+ 1 -> S2N+1, is introduced and used to distinguish among the spherical equivalence classes in Faran's list P*(2, 3) (cf. Faran in Invent Math 68: 441-475, 1982). As an application, the boundary values phi of Alexander's map Phi is an element of P(2, 3) (cf. Alexander in Indiana Univ Math J 26: 137-146, 1977) is shown to be homotopically nontrivial, as a map of {(z, w) is an element of S-3 : w + (w) over bar > 0} into S-5\S-3.
引用
收藏
页码:1469 / 1498
页数:30
相关论文
共 35 条
[1]   PROPER HOLOMORPHIC MAPPINGS IN CN [J].
ALEXANDER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (01) :137-146
[2]  
Baird Paul, 2003, London Mathematical Society Monographs. New Series, V29
[3]   On transversally holomorphic maps of Kahlerian foliations [J].
Barletta, E ;
Dragomir, S .
ACTA APPLICANDAE MATHEMATICAE, 1998, 54 (02) :121-134
[4]  
Barletta E, 2001, INDIANA U MATH J, V50, P719
[5]  
Barletta E., 2013, PREPRINT
[6]  
Blair D.E., 1976, CONTACT MANIFOLDS RI, V509
[8]  
Chen BY, 2000, HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL I, P187, DOI 10.1016/S1874-5741(00)80006-0
[9]  
Dragomir, 1998, PROGR MATH, V155
[10]  
Dragomir S., 2006, PROGR MATH, V246