A quantitative proteomic workflow for characterization of frozen clinical biopsies: Laser capture microdissection coupled with label-free mass spectrometry

被引:35
|
作者
Shapiro, John P. [1 ]
Biswas, Sabyasachi [4 ]
Merchant, Anand S. [5 ]
Satoskar, Anjali [3 ]
Taslim, Cenny [1 ]
Lin, Shili [6 ]
Rovin, Brad H. [2 ]
Sen, Chandan K. [4 ]
Roy, Sashwati [4 ]
Freitas, Michael A. [1 ]
机构
[1] Ohio State Univ, Coll Med, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
[2] Ohio State Univ, Coll Med, Dept Internal Med, Columbus, OH 43210 USA
[3] Ohio State Univ, Coll Med, Dept Pathol, Columbus, OH 43210 USA
[4] Ohio State Univ, Coll Med, Comprehens Wound Ctr, Columbus, OH 43210 USA
[5] Ohio State Univ, Coll Med, Dept Mol & Cellular Biochem, Columbus, OH 43210 USA
[6] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
Laser capture microdissection; Proteomics; Label-free; Biopsy; Mass spectrometry; SOLID TUMOR HETEROGENEITY; EXPRESSION; CARCINOMA; ABUNDANCE; CULTURE; WOUNDS; VIRUS; MODEL; HEAD; NECK;
D O I
10.1016/j.jprot.2012.09.019
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a "one-pot" protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3000-10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 50 条
  • [21] A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development
    Katz, Ehud
    Fon, Mario
    Eigenheer, Richard A.
    Phinney, Brett S.
    Fass, Joseph N.
    Lin, Dawei
    Sadka, Avi
    Blumwald, Eduardo
    PROTEOME SCIENCE, 2010, 8
  • [22] Impact of data-dependent exclusion list based mass spectrometry on label-free proteomic quantification
    Yeom, Jeonghun
    Kabir, Mohammad Humayun
    Lee, Cheolju
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2015, 29 (01) : 128 - 134
  • [23] The use of shotgun label-free quantitative proteomic mass spectrometry to evaluate the inflammatory response in aqueous humor from horses with uveitis compared to ophthalmologically healthy horses
    Terhaar, Hannah M.
    Henriksen, Michala de Linde
    Mehaffy, Carolina
    Hess, Ann
    McMullen, Richard J.
    VETERINARY OPHTHALMOLOGY, 2024, 27 (01) : 40 - 52
  • [24] Morpheus Spectral Counter: A computational tool for label-free quantitative mass spectrometry using the Morpheus search engine
    Gemperline, David C.
    Scalf, Mark
    Smith, Lloyd M.
    Vierstra, Richard D.
    PROTEOMICS, 2016, 16 (06) : 920 - 924
  • [25] ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry
    Di Tomasso, Genevieve
    Jenkins, Lisa M. Miller
    Legault, Pascale
    RNA, 2016, 22 (11) : 1760 - 1770
  • [26] Proteomic analysis of high-grade dysplastic cervical cells obtained from ThinPrep slides using laser capture microdissection and mass spectrometry
    Gu, Ye
    Wu, Shiaw-Lin
    Meyer, Jane L.
    Hancock, William S.
    Burg, Lawrence J.
    Linder, James
    Hanlon, David W.
    Karger, Barry L.
    JOURNAL OF PROTEOME RESEARCH, 2007, 6 (11) : 4256 - 4268
  • [27] Deciphering Membrane-Associated Molecular Processes in Target Tissue of Autoimmune Uveitis by Label-Free Quantitative Mass Spectrometry
    Hauck, Stefanie M.
    Dietter, Johannes
    Kramer, Roxane L.
    Hofmaier, Florian
    Zipplies, Johanna K.
    Amann, Barbara
    Feuchtinger, Annette
    Deeg, Cornelia A.
    Ueffing, Marius
    MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (10) : 2292 - 2305
  • [28] Identification of Adipophilin as a Potential Plasma Biomarker for Colorectal Cancer Using Label-Free Quantitative Mass Spectrometry and Protein Microarray
    Matsubara, Junichi
    Honda, Kazufumi
    Ono, Masaya
    Sekine, Shigeki
    Tanaka, Yoshinori
    Kobayashi, Michimoto
    Jung, Giman
    Sakuma, Tomohiro
    Nakamori, Shoji
    Sata, Naohiro
    Nagai, Hideo
    Ioka, Tatsuya
    Okusaka, Takuji
    Kosuge, Tomoo
    Tsuchida, Akihiko
    Shimahara, Masashi
    Yasunami, Yohichi
    Chiba, Tsutomu
    Yamada, Tesshi
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2011, 20 (10) : 2195 - 2203
  • [29] Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine
    Dick, Lawrence W., Jr.
    Mehl, John T.
    Loughney, John W.
    Mach, Anna
    Rustandi, Richard R.
    Ha, Sha
    Zhang, Lan
    Przysiecki, Craig T.
    Dieter, Lance
    Hoang, Van M.
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2015, 11 (06) : 1518 - 1525
  • [30] Proteomic analysis of rat plasma with experimental autoimmune uveitis based on label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS)
    Guo, Dadong
    Gu, Peiming
    Liu, Zhengfeng
    Tang, Kai
    Du, Yuxiang
    Bi, Hongsheng
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2015, 976 : 84 - 90