The Explicit Constrained Min-Max Model Predictive Control of a Discrete-Time Linear System With Uncertain Disturbances

被引:44
作者
Gao, Yu [1 ]
Chong, Kil To [1 ]
机构
[1] Jeon Buk Natl Univ, Sch Elect Engn, Jeonju 561756, South Korea
基金
新加坡国家研究基金会;
关键词
Constraints; model predictive control; piecewise affine; uncertain; ADDITIVE UNCERTAINTIES; MPC;
D O I
10.1109/TAC.2012.2186090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this technical brief, we develop an algorithm to determine the explicit solution of the constrained min-max model predictive control problem. For a discrete-time linear system with bounded additive uncertain disturbance, the control law is determined to be piecewise affine from a quadratic cost function and the state space is partitioned into corresponding polyhedral cones. By moving the on-line implementation to an off-line explicit evaluation, the computational burden is decreased and the applicability of min-max optimization is broadened. The results of this approach are shown via computer simulations.
引用
收藏
页码:2373 / 2378
页数:6
相关论文
共 24 条
[1]   Min-max MPC using a tractable QP problem [J].
Alamo, T. ;
Ramirez, D. R. ;
de la Pena, D. Munoz ;
Camacho, E. F. .
AUTOMATICA, 2007, 43 (04) :693-700
[2]  
Alamo T, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P1433
[3]  
[Anonymous], 2004, MULTIPARAMETRIC TOOL
[4]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[5]   Min-max control of constrained uncertain discrete-time linear systems [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1600-1606
[6]   Model predictive control based on linear programming - The explicit solution [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (12) :1974-1985
[7]   Approximate robust dynamic programming and robustly stable MPC [J].
Björnberg, J ;
Diehl, M .
AUTOMATICA, 2006, 42 (05) :777-782
[8]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[9]   Model Predictive Control for Stochastic Resource Allocation [J].
Castanon, David A. ;
Wohletz, Jerry M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (08) :1739-1750
[10]  
de la Peña DM, 2006, P AMER CONTR CONF, V1-12, P1575