Two sharp double inequalities for Seiffert mean

被引:27
作者
Chu, Yu-Ming [1 ]
Wang, Miao-Kun [1 ]
Gong, Wei-Ming [2 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Hunan City Univ, Dept Math, Yiyang 413000, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2011年
关键词
Root-square mean; arithmetic mean; Seiffert mean; BOUNDS;
D O I
10.1186/1029-242X-2011-44
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish two new inequalities between the root-square, arithmetic, and Seiffert means. The achieved results are inspired by the paper of Seiffert (Die Wurzel, 29, 221-222, 1995), and the methods from Chu et al. (J. Math. Inequal., 4, 581-586, 2010). The inequalities we obtained improve the existing corresponding results and, in some sense, are optimal.
引用
收藏
页数:7
相关论文
共 11 条
[1]  
[Anonymous], MATH MAG
[2]   STOCHASTIC-ANALYSIS OF A COMPRESSIBLE GAS LUBRICATION SLIDER BEARING PROBLEM [J].
CHANDRA, J ;
LADDE, GS ;
LAKSHMIKANTHAM, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (05) :1174-1186
[3]   An Optimal Double Inequality between Power-Type Heron and Seiffert Means [J].
Chu, Yu-Ming ;
Wang, Miao-Kun ;
Qiu, Ye-Fang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
[4]   GENERAL BOUNDS AND INEQUALITIES IN ORDER-STATISTICS [J].
DAVID, HA .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (07) :2119-2134
[5]  
Hardy G.H, 1988, Inequalities
[6]   AVERAGES ON THE MOVE [J].
HOEHN, L ;
NIVEN, I .
MATHEMATICS MAGAZINE, 1985, 58 (03) :151-156
[7]   Sets of independent postulates for the arithmetic mean, the geometric mean, the harmonic mean, and the root-mean-square [J].
Huntington, Edward V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1927, 29 (1-4) :1-22
[8]  
Pisani C., 1995, Int. J. Quantum. Chem, V29, P221
[9]  
Shi HN, 2010, APPL MATH E-NOTES, V10, P275
[10]  
Taneja IJ., 2006, J COMB INF SYST SCI, V31, P343