Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate

被引:44
作者
Toth, Peter S. [1 ]
Valota, Anna T. [1 ]
Velicky, Matej [1 ]
Kinloch, Ian A. [2 ]
Novoselov, Kostya S. [3 ]
Hill, Ernie W. [4 ]
Dryfe, Robert A. W. [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
HETEROGENEOUS ELECTRON-TRANSFER; ORIENTED PYROLYTIC-GRAPHITE; TRANSFER KINETICS; CYCLIC VOLTAMMETRY; MONOLAYER; PLANE; NANOELECTRODES; NANOPARTICLES; CAPACITANCE; REACTIVITY;
D O I
10.1039/c3sc52026a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A micro apparatus for electrochemical studies on individual high quality graphene flakes is presented. A microinjection-micromanipulator system has been employed to deposit droplets of aqueous solutions containing redox-active species directly on selected micro-scale areas of mechanically exfoliated graphene layers on polymer coated silicon wafers. This approach allows the clear distinction between the electrochemical activity of pristine basal planes and the edges (defects) or steps to be measured. Voltammetric measurements were performed in a two-electrode configuration, and the standard heterogeneous electron transfer rate (k(degrees)) for reduction of hexachloroiridate (IrCl62-) was estimated. The kinetics of electron transfer were evaluated for several types of graphene: mono, bi, and few layer basal planes, and the k degrees was estimated for an edge/step between two few layer graphene flakes. As a comparison, the kinetic behaviour of graphite basal planes was measured for the deposited aqueous droplets. The appearance of ruptures on the graphene monolayer was observed after deposition of the aqueous solution for the case of graphene on a bare silicon/silicon oxide substrate.
引用
收藏
页码:582 / 589
页数:8
相关论文
共 71 条
[1]   SU-8 as a structural material for labs-on-chips and microelectromechanical systems [J].
Abgrall, Patrick ;
Conedera, Veronique ;
Camon, Henri ;
Gue, Anne-Marie ;
Nguyen, Nam-Trung .
ELECTROPHORESIS, 2007, 28 (24) :4539-4551
[2]   Electrochemistry at CVD Grown Multilayer Graphene Transferred onto Flexible Substrates [J].
Ambrosi, Adriano ;
Pumera, Martin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (05) :2053-2058
[3]   Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Khezri, Bahareh ;
Sofer, Zdenek ;
Webster, Richard D. ;
Pumera, Martin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (32) :12899-12904
[4]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[5]   Determination of heterogeneous electron transfer kinetics in the presence of ultrasound at microelectrodes employing sampled voltammetry [J].
Birkin, PR ;
SilvaMartinez, S .
ANALYTICAL CHEMISTRY, 1997, 69 (11) :2055-2062
[6]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[7]   Chemical functionalization of graphene [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (34)
[8]   Electrochemical deposition and reoxidation of Au at highly oriented pyrolytic graphite. Stabilization of Au nanoparticles on the upper plane of step edges [J].
Boxley, CJ ;
White, HS ;
Lister, TE ;
Pinhero, PJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (02) :451-458
[9]   Ultraviolet Raman microscopy of single and multilayer graphene [J].
Calizo, Irene ;
Bejenari, Igor ;
Rahman, Muhammad ;
Liu, Guanxiong ;
Balandin, Alexander A. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (04)
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162