Efficiency of recoil momentum generation during femtosecond laser ablation of copper in vacuum

被引:2
作者
Loktionov, E. Yu [1 ]
Protasov, Yu S. [1 ]
Protasov, Yu Yu [1 ]
机构
[1] NE Bauman Moscow State Tech Univ, 5 Bldg 1 2nd Baumanskaya Str, Moscow 105005, Russia
基金
俄罗斯基础研究基金会;
关键词
laser ablation; radiative energy conversion efficiency; momentum coupling coefficient; laser thrusters; MOLECULAR-DYNAMICS SIMULATION; OPTOMECHANICAL CHARACTERISTICS; CONDENSED MEDIA; PULSE DURATION; ION EMISSION; METALS; IMPULSE; GAS; PICOSECOND; TARGETS;
D O I
10.1007/s10812-013-9754-z
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
A combination of interferometric techniques is used to determine the specific impulse (similar to 250-300 s), specific mechanical recoil momentum (momentum coupling, 1-3a (TM) 10(-4) Na (TM) s/J), efficiency with which the laser energy is converted to kinetic energy of the gas-plasma fl ow (similar to 0.1-0.55), and degree of monochromaticity (similar to 0.75-0.82) of the gas-plasma flow during femtosecond (tau similar to 45 fs, lambda similar to 800 nm) ablation of copper in vacuum. The experimental results are compared with published data covering a wide range of laser interaction parameters.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 77 条
[1]   Ablation of metals by ultrashort laser pulses: Theoretical modeling and computer simulations [J].
Afanasiev, YV ;
Chichkov, BN ;
Demchenko, NN ;
Isakov, VA ;
Zavestovskaya, IN .
JOURNAL OF RUSSIAN LASER RESEARCH, 1999, 20 (02) :89-115
[2]   Ablation yield and angular distribution of ablated particles from laser-irradiated metals: The most fundamental determining factor [J].
Ali, Dilawar ;
Butt, M. Z. ;
Khaleeq-ur-Rahman, M. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2854-2860
[3]   Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry [J].
Amer, E. ;
Gren, P. ;
Kaplan, A. F. H. ;
Sjodahl, M. ;
El Shaer, M. .
APPLIED SURFACE SCIENCE, 2010, 256 (14) :4633-4641
[4]   Thermal and nonthermal ion emission during high-fluence femtosecond laser ablation of metallic targets [J].
Amoruso, S ;
Wang, X ;
Altucci, C ;
de Lisio, C ;
Armenante, M ;
Bruzzese, R ;
Velotta, R .
APPLIED PHYSICS LETTERS, 2000, 77 (23) :3728-3730
[5]   Generation of silicon nanoparticles via femtosecond laser ablation in vacuum [J].
Amoruso, S ;
Bruzzese, R ;
Spinelli, N ;
Velotta, R ;
Vitiello, M ;
Wang, X ;
Ausanio, G ;
Iannotti, V ;
Lanotte, L .
APPLIED PHYSICS LETTERS, 2004, 84 (22) :4502-4504
[6]   Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals [J].
Amoruso, S ;
Wang, X ;
Altucci, C ;
de Lisio, C ;
Armenante, M ;
Bruzzese, R ;
Spinelli, N ;
Velotta, R .
APPLIED SURFACE SCIENCE, 2002, 186 (1-4) :358-363
[7]   Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser [J].
Ancona, A. ;
Nodop, D. ;
Limpert, J. ;
Nolte, S. ;
Tuennermann, A. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 94 (01) :19-24
[8]   Explosive boiling of water induced by the pulsed HF-laser radiation [J].
Andreev, S. N. ;
Firsov, K. N. ;
Kazantsev, S. Yu. ;
Kononov, I. G. ;
Samokhin, A. A. .
LASER PHYSICS, 2007, 17 (06) :834-841
[9]   Subpicosecond laser ablation of copper and fused silica: Initiation threshold and plasma expansion [J].
Axente, E. ;
Noel, S. ;
Hermann, J. ;
Sentis, M. ;
Mihailescu, I. N. .
APPLIED SURFACE SCIENCE, 2009, 255 (24) :9734-9737
[10]  
Bernath R., 2007, THESIS