Improving the averaging theory for computing periodic solutions of the differential equations

被引:19
作者
Llibre, Jaume [1 ]
Novaes, Douglas D. [1 ,2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Estadual Campinas, Dept Matemat, BR-13083859 Campinas, SP, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
Periodic solutions; Limit cycles; Averaging theory; Lyapunov-Schmidt reduction; Nonlinear differential systems; SYSTEMS; BIFURCATION; ORBITS; ORDER;
D O I
10.1007/s00033-014-0460-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For we consider differential systems of the form x' = F-0(t,x) + Sigma(m)(i=1) epsilon F-i(i)(t,x) + epsilon Rm+1(t,x,epsilon), where F-i: R x D -> R-n and R : R x D x(-epsilon(0), epsilon(0)) -> R-n are c(m+1) functions, and T-periodic in the first variable, being D an open subset of R-n, and epsilon a small parameter. For such system, we assume that the unperturbed system x' = F-0(t, x) has a k-dimensional manifold of periodic solutions with k <= n. We weaken the sufficient assumptions for studying the periodic solutions of the perturbed system when vertical bar epsilon vertical bar > 0 is sufficiently small.
引用
收藏
页码:1401 / 1412
页数:12
相关论文
共 26 条
[1]  
Amann H., 1990, ORDINARY DIFFERENTIA, V13
[2]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[3]  
Buica A, 2007, COMMUN PUR APPL ANAL, V6, P103
[4]  
Buica A, 2014, TOPOL METHOD NONL AN, V43, P403
[5]   LYAPUNOV-SCHMIDT REDUCTION AND MELNIKOV INTEGRALS FOR BIFURCATION OF PERIODIC-SOLUTIONS IN COUPLED OSCILLATORS [J].
CHICONE, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (02) :407-447
[6]   PERIODIC SOLUTIONS OF EL NINO MODEL THROUGH THE VALLIS DIFFERENTIAL SYSTEM [J].
Euzebio, Rodrigo Donizete ;
Llibre, Jaume .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) :3455-3469
[7]   Averaging theory at any order for computing periodic orbits [J].
Gine, Jaume ;
Grau, Maite ;
Llibre, Jaume .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 :58-65
[8]   Periodic orbits of Hamiltonian systems: Applications to perturbed Kepler problems [J].
Guirao, Juan L. G. ;
Llibre, Jaume ;
Vera, Juan A. .
CHAOS SOLITONS & FRACTALS, 2013, 57 :105-111
[9]   Generalized van der Waals Hamiltonian: Periodic orbits and C1 nonintegrability [J].
Guirao, Juan L. G. ;
Llibre, Jaume ;
Vera, Juan A. .
PHYSICAL REVIEW E, 2012, 85 (03)
[10]  
Llibre J., 2012, PHYSICA D, V241, P528