A PRIORI ERROR ESTIMATES FOR FINITE VOLUME ELEMENT APPROXIMATIONS TO SECOND ORDER LINEAR HYPERBOLIC INTEGRO-DIFFERENTIAL EQUATIONS

被引:0
作者
Karaa, Samir [1 ]
Pani, Amiya K. [2 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Muscat 123, Oman
[2] Indian Inst Technol, Dept Math, Ind Math Grp, Bombay 400076, Maharashtra, India
关键词
Finite volume element; hyperbolic integro-differential equation; semidiscrete method; numerical quadrature; Ritz-Volterra projection; completely discrete scheme; optimal error estimates; QUADRATURE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, both semidiscrete and completely discrete finite volume element methods (FVEMs) are analyzed for approximating solutions of a class of linear hyperbolic integro-differential equations in a two-dimensional convex polygonal domain. The effect of numerical quadrature is also examined. In the semidiscrete case, optimal error estimates in L-infinity (L-2) and L-infinity(H-1) norms are shown to hold with minimal regularity assumptions on the initial data, whereas quasi-optimal estimate is derived in L-infinity(L-infinity) norm under higher regularity on the data. Based on a second order explicit method in time, a completely discrete scheme is examined and optimal error estimates are established with a mild condition on the space and time discretizing parameters. Finally, some numerical experiments are conducted which confirm the theoretical order of convergence.
引用
收藏
页码:401 / 429
页数:29
相关论文
共 27 条
[1]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[2]   ERROR ESTIMATES FOR FINITE-ELEMENT METHODS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :564-576
[3]   EFFECT OF QUADRATURE ERRORS ON FINITE-ELEMENT APPROXIMATIONS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA ;
DOUGALIS, VA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :577-598
[4]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[5]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[6]  
Cannon J. R., 1988, Calcolo, V25, P187, DOI 10.1007/BF02575943
[7]  
Cannon J. R., 1989, Calcolo, V26, P197, DOI 10.1007/BF02575729
[8]   Error estimates for a finite volume element method for parabolic equations in convex polygonal domains [J].
Chatzipantelidis, P ;
Lazarov, RD ;
Thomée, V .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) :650-674
[9]   Finite volume methods for elliptic PDE's: A new approach [J].
Chatzipantelidis, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (02) :307-324
[10]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8