Asymptotic behavior of integral functionals for a two-parameter singularly perturbed nonlinear traction problem

被引:3
|
作者
Falconi, Riccardo [1 ]
Luzzini, Paolo [2 ]
Musolino, Paolo [3 ]
机构
[1] Fraunhofer Inst Techno & Wirtschaftsmath ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[3] Univ Ca Foscari Venezia, Dipartimento Sci Mol & Nanosistemi, Via Torino 155, I-30172 Venice, Italy
关键词
nonlinear boundary value problems for linear elliptic equations; integral representations; integral equation methods; linearized elastostatics; periodically perforated domains; singularly perturbed domains; DOMAINS;
D O I
10.1002/mma.6920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear traction boundary value problem for the Lame equations in an unbounded periodically perforated domain. The edges lengths of the periodicity cell are proportional to a positive parameter delta, whereas the relative size of the holes is determined by a second positive parameter epsilon. Under suitable assumptions on the nonlinearity, there exists a family of solutions{u(epsilon,delta,center dot)}(epsilon,delta)is an element of]0,epsilon '[x]0,delta '[. We analyze the asymptotic behavior of two integral functionals associated to such a family of solutions when the perturbation parameter pair(epsilon, delta)is close to the degenerate value(0, 0).
引用
收藏
页码:2111 / 2129
页数:19
相关论文
共 50 条
  • [1] On graded meshes for a two-parameter singularly perturbed problem
    Brdar, Mirjana
    Zarin, Helena
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 282 : 97 - 107
  • [2] A parameter robust second order numerical method for a singularly perturbed two-parameter problem
    Gracia, JL
    O'Riordan, E
    Pickett, ML
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (07) : 962 - 980
  • [3] Superconvergence analysis of a finite element method for a two-parameter singularly perturbed problem
    Ljiljana Teofanov
    Helena Zarin
    BIT Numerical Mathematics, 2009, 49 : 743 - 765
  • [4] Superconvergence analysis of a finite element method for a two-parameter singularly perturbed problem
    Teofanov, Ljiljana
    Zarin, Helena
    BIT NUMERICAL MATHEMATICS, 2009, 49 (04) : 743 - 765
  • [5] Numerical study of two-parameter singularly perturbed problem in two dimensions on an exponentially graded mesh
    Meenakshi Shivhare
    Pramod Chakravarthy Podila
    Computational and Applied Mathematics, 2022, 41
  • [6] Two-grid algorithm for the solution of singularly perturbed two-parameter problem on Shishkin mesh
    Tikhovskaya, S. V.
    Korbut, M. F.
    XII INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE APPLIED MECHANICS AND SYSTEMS DYNAMICS, 2019, 1210
  • [7] Numerical study of two-parameter singularly perturbed problem in two dimensions on an exponentially graded mesh
    Shivhare, Meenakshi
    Podila, Pramod Chakravarthy
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (02):
  • [8] A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem
    Sunil Sumit
    Mukesh Kumar
    Computational and Applied Mathematics, 2020, 39
  • [9] A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem
    Sumit
    Kumar, Sunil
    Kuldeep
    Kumar, Mukesh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [10] A Fitted Numerical Approach for Singularly Perturbed Two-Parameter Parabolic Problem with Time Delay
    Daba, Imiru Takele
    Melesse, Wondwosen Gebeyaw
    Kebede, Guta Demisu
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2023, 2023