GRADIENT ESTIMATE FOR SOLUTIONS TO QUASILINEAR NON-DEGENERATE KELLER-SEGEL SYSTEMS ON RN

被引:3
作者
Ishida, Sachiko [1 ]
Maeda, Yusuke [1 ]
Yokota, Tomomi [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2013年 / 18卷 / 10期
基金
日本学术振兴会;
关键词
Quasilinear non degenerate Keller-Segel systems; blow-up; GLOBAL EXISTENCE; PARABOLIC-SYSTEMS;
D O I
10.3934/dcdsb.2013.18.2537
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives the gradient estimate for solutions to the quasilinear non-degenerate parabolic-parabolic Keller-Segel system (KS) on the whole space R-N. The gradient estimate for (KS) on bounded domains is known as an application of Amann's existence theory in [1]. However, in the whole space case it seems necessary to derive the gradient estimate directly. The key to the proof is a modified Bernstein's method. The result is useful to obtain the whole space version of the global existence result by Tao-Winkler [13] except for the boundedness.
引用
收藏
页码:2537 / 2568
页数:32
相关论文
共 13 条
[1]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[2]  
[Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
[3]  
[Anonymous], 1995, ABSTRACT LINEAR THEO
[4]   Quasilinear nonuniformly parabolic system modelling chemotaxis [J].
Cieslak, Tomasz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1410-1426
[5]  
Hieber M., 1997, PARTIAL DIFFERENTIAL, V22, P1647
[6]   Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type [J].
Ishida, Sachiko ;
Yokota, Tomomi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1421-1440
[7]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&
[8]  
Kozono H, 1998, MATH ANN, V312, P319, DOI 10.1007/s002080050224
[9]  
Stein E. M., 1970, Princeton Mathematical Series
[10]  
Sugiyama Y, 2007, DIFFER INTEGRAL EQU, V20, P133