ON THE OSEEN PROBLEM IN THREE-DIMENSIONAL EXTERIOR DOMAINS

被引:12
作者
Amrouche, Cherif [1 ]
Razafison, Ulrich [1 ]
机构
[1] Univ Pau & Pays Adour, CNRS, IPRA, Lab Math Appl,UMR 5142, F-64013 Pau, France
关键词
Oseen equations; weighted spaces; exterior domains; fluid mechanics;
D O I
10.1142/S0219530506000735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove existence and uniqueness results for the Oseen problem in exterior domains of R-3. To prescribe the growth or decay of functions at infinity, we set the problem in weighted Sobolev spaces. The analysis relies on a L-p-theory for any real p such that 1 < p < infinity.
引用
收藏
页码:133 / 162
页数:30
相关论文
共 24 条
[1]  
Alliot F, 2000, MATH METHOD APPL SCI, V23, P575, DOI 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO
[2]  
2-4
[3]   Weighted Sobolev spaces for the steady scalar Oseen equation in Rn [J].
Amrouche, C ;
Razafison, U .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (12) :761-766
[4]  
AMROUCHE C, 1994, J MATH PURE APPL, V73, P579
[5]  
AMROUCHE C, 1994, CZECH MATH J, V44, P109
[6]   Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces [J].
Amrouche, C ;
Girault, V ;
Giroire, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01) :55-81
[7]  
Amrouche C., 2004, J MATH FLUI IN PRESS
[8]  
Amrouche C., 2003, J MATH FLUI IN PRESS
[9]  
Babenko K.I., 1973, Math. USSR Sb., V20, P1
[10]  
de Rham G., 1955, VARIETES DIFFERENTIA