Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model

被引:20
作者
Sun, Xiaoxiao [1 ]
Dalpiaz, David [2 ]
Wu, Di [3 ]
Liu, Jun S. [3 ]
Zhong, Wenxuan [1 ]
Ma, Ping [1 ]
机构
[1] Univ Georgia, Dept Stat, 101 Cedar St, Athens, GA 30602 USA
[2] Univ Illinois, Dept Stat, 725 South Wright St, Champaign, IL 61820 USA
[3] Harvard Univ, Dept Stat, One Oxford St, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Differentially expressed gene; Gene set enrichment; Analysis of variance; Smoothing spline; Penalized likelihood; BIOCONDUCTOR PACKAGE; EXPRESSION ANALYSIS; GENE;
D O I
10.1186/s12859-016-1180-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. Results: Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. Conclusions: The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.
引用
收藏
页数:13
相关论文
共 28 条
[1]   Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation [J].
Aijo, Tarmo ;
Butty, Vincent ;
Chen, Zhi ;
Salo, Verna ;
Tripathi, Subhash ;
Burge, Christopher B. ;
Lahesmaa, Riitta ;
Lahdesmaki, Harri .
BIOINFORMATICS, 2014, 30 (12) :113-120
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]   Detecting differential usage of exons from RNA-seq data [J].
Anders, Simon ;
Reyes, Alejandro ;
Huber, Wolfgang .
GENOME RESEARCH, 2012, 22 (10) :2008-2017
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]  
Craven P., 1979, Numerische Mathematik, V31, P377, DOI 10.1007/BF01404567
[7]   ON TESTING THE SIGNIFICANCE OF SETS OF GENES [J].
Efron, Bradley ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2007, 1 (01) :107-129
[8]   Polyester: simulating RNA-seq datasets with differential transcript expression [J].
Frazee, Alyssa C. ;
Jaffe, Andrew E. ;
Langmead, Ben ;
Leek, Jeffrey T. .
BIOINFORMATICS, 2015, 31 (17) :2778-2784
[9]   The developmental transcriptome of Drosophila melanogaster [J].
Graveley, Brenton R. ;
Brooks, Angela N. ;
Carlson, JosephW. ;
Duff, Michael O. ;
Landolin, Jane M. ;
Yang, Li ;
Artieri, Carlo G. ;
van Baren, Marijke J. ;
Boley, Nathan ;
Booth, Benjamin W. ;
Brown, James B. ;
Cherbas, Lucy ;
Davis, Carrie A. ;
Dobin, Alex ;
Li, Renhua ;
Lin, Wei ;
Malone, John H. ;
Mattiuzzo, Nicolas R. ;
Miller, David ;
Sturgill, David ;
Tuch, Brian B. ;
Zaleski, Chris ;
Zhang, Dayu ;
Blanchette, Marco ;
Dudoit, Sandrine ;
Eads, Brian ;
Green, Richard E. ;
Hammonds, Ann ;
Jiang, Lichun ;
Kapranov, Phil ;
Langton, Laura ;
Perrimon, Norbert ;
Sandler, Jeremy E. ;
Wan, Kenneth H. ;
Willingham, Aarron ;
Zhang, Yu ;
Zou, Yi ;
Andrews, Justen ;
Bickel, Peter J. ;
Brenner, Steven E. ;
Brent, Michael R. ;
Cherbas, Peter ;
Gingeras, Thomas R. ;
Hoskins, Roger A. ;
Kaufman, Thomas C. ;
Oliver, Brian ;
Celniker, Susan E. .
NATURE, 2011, 471 (7339) :473-479
[10]   Generalized Nonparametric mixed-effect models: Computation and smoothing parameter selection [J].
Gu, C ;
Ma, P .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) :485-504