On physics-informed neural networks for quantum computers

被引:8
作者
Markidis, Stefano [1 ]
机构
[1] KTH Royal Inst Technol, Dept Comp Sci, Stockholm, Sweden
关键词
quantum physics-informed neural network; Poisson equation; quantum neural networks; continuous variable quantum computing; heterogeneous QPU CPU computing; COMPUTATION; INFORMATION;
D O I
10.3389/fams.2022.1036711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Physics-Informed Neural Networks (PINN) emerged as a powerful tool for solving scientific computing problems, ranging from the solution of Partial Differential Equations to data assimilation tasks. One of the advantages of using PINN is to leverage the usage of Machine Learning computational frameworks relying on the combined usage of CPUs and co-processors, such as accelerators, to achieve maximum performance. This work investigates the design, implementation, and performance of PINNs, using the Quantum Processing Unit (QPU) co-processor. We design a simple Quantum PINN to solve the one-dimensional Poisson problem using a Continuous Variable (CV) quantum computing framework. We discuss the impact of different optimizers, PINN residual formulation, and quantum neural network depth on the quantum PINN accuracy. We show that the optimizer exploration of the training landscape in the case of quantum PINN is not as effective as in classical PINN, and basic Stochastic Gradient Descent (SGD) optimizers outperform adaptive and high-order optimizers. Finally, we highlight the difference in methods and algorithms between quantum and classical PINNs and outline future research challenges for quantum PINN development.
引用
收藏
页数:14
相关论文
共 60 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   BACKPROPAGATION AND STOCHASTIC GRADIENT DESCENT METHOD [J].
AMARI, S .
NEUROCOMPUTING, 1993, 5 (4-5) :185-196
[3]   Effect of barren plateaus on gradient-free optimization [J].
Arrasmith, Andrew ;
Cerezo, M. ;
Czarnik, Piotr ;
Cincio, Lukasz ;
Coles, Patrick J. .
QUANTUM, 2021, 5
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]  
Baydin AG, 2018, J MACH LEARN RES, V18
[6]  
Bengio Y., 2007, NEURIPS
[7]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[8]  
Bravo-Prieto C, 2023, Arxiv, DOI arXiv:1909.05820
[9]   Applications of near-term photonic quantum computers: software and algorithms [J].
Bromley, Thomas R. ;
Arrazola, Juan Miguel ;
Jahangiri, Soran ;
Izaac, Josh ;
Quesada, Nicolas ;
Gran, Alain Delgado ;
Schuld, Maria ;
Swinarton, Jeremy ;
Zabaneh, Zeid ;
Killoran, Nathan .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)
[10]  
Broughton M, 2021, Arxiv, DOI arXiv:2003.02989