Tuning Synthetic Semiflexible Networks by Bending Stiffness

被引:36
|
作者
Schuldt, Carsten [1 ,2 ]
Schnauss, Joerg [1 ,2 ]
Haendler, Tina [1 ,2 ]
Glaser, Martin [1 ,2 ]
Lorenz, Jessica [2 ]
Golde, Tom [1 ]
Kaes, Josef A. [1 ]
Smith, David M. [2 ]
机构
[1] Univ Leipzig, Inst Expt Phys 1, Linnestr 5, D-04103 Leipzig, Germany
[2] Fraunhofer Inst Cell Therapy & Immunol, Perlickstr 1, D-04103 Leipzig, Germany
关键词
ACTIN SOLUTIONS; MECHANICAL-PROPERTIES; FORCE MICROSCOPY; PLATEAU MODULUS; F-ACTIN; DYNAMICS; POLYMER; ELASTICITY; FILAMENTS; CHAINS;
D O I
10.1103/PhysRevLett.117.197801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The mechanics of complex soft matter often cannot be understood in the classical physical frame of flexible polymers or rigid rods. The underlying constituents are semiflexible polymers, whose finite bending stiffness (kappa) leads to nontrivial mechanical responses. A natural model for such polymers is the protein actin. Experimental studies of actin networks, however, are limited since the persistence length (l(p) alpha kappa) cannot be tuned. Here, we experimentally characterize this parameter for the first time in entangled networks formed by synthetically produced, structurally tunable DNA nanotubes. This material enabled the validation of characteristics inherent to semiflexible polymers and networks thereof, i.e., persistence length, inextensibility, reptation, and mesh size scaling. While the scaling of the elastic plateau modulus with concentration G(0) alpha c(7/5) is consistent with previous measurements and established theories, the emerging persistence length scaling G(0) alpha l(p) opposes predominant theoretical predictions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Impact of bending stiffness on ground-state conformations for semiflexible polymers
    Aierken, Dilimulati
    Bachmann, Michael
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (21)
  • [2] Rheology of Semiflexible Bundle Networks with Transient Linkers
    Mueller, Kei W.
    Bruinsma, Robijn F.
    Lieleg, Oliver
    Bausch, Andreas R.
    Wall, Wolfgang A.
    Levine, Alex J.
    PHYSICAL REVIEW LETTERS, 2014, 112 (23)
  • [3] Stretching Semiflexible Filaments and Their Networks
    Blundell, J. R.
    Terentjev, E. M.
    MACROMOLECULES, 2009, 42 (14) : 5388 - 5394
  • [4] Enhanced Heterogeneous Diffusion of Nanoparticles in Semiflexible Networks
    Xu, Ziyang
    Dai, Xiaobin
    Bu, Xiangyu
    Yang, Ye
    Zhang, Xuanyu
    Man, Xingkun
    Zhang, Xinghua
    Doi, Masao
    Yan, Li-Tang
    ACS NANO, 2021, 15 (03) : 4608 - 4616
  • [5] Designing highly tunable semiflexible filament networks
    Pandolfi, Ronald J.
    Edwards, Lauren
    Johnston, David
    Becich, Peter
    Hirst, Linda S.
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [6] Viscoelasticity of reversibly crosslinked networks of semiflexible polymers
    Plagge, Jan
    Fischer, Andreas
    Heussinger, Claus
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [7] EFFECTS OF STIFFNESS ON SHORT, SEMIFLEXIBLE HOMOPOLYMER CHAINS
    Seaton, Daniel T.
    Schnabel, Stefan
    Bachmann, Michael
    Landau, David P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (08):
  • [8] Detailed dynamics of discrete Gaussian semiflexible chains with arbitrary stiffness along the contour
    Tejedor, Andres R.
    Tejedor, Jaime R. R.
    Ramirez, Jorge
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (16)
  • [9] Modeling semiflexible polymer networks
    Broedersz, C. P.
    MacKintosh, F. C.
    REVIEWS OF MODERN PHYSICS, 2014, 86 (03) : 995 - 1036
  • [10] Cooperative buckling and the nonlinear mechanics of nematic semiflexible networks
    Foucard, L. C.
    Price, J. K.
    Klug, W. S.
    Levine, A. J.
    NONLINEARITY, 2015, 28 (09) : R89 - R112