Optimal convergence for the finite element method in Campanato spaces

被引:6
作者
Dolzmann, G [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
optimal error estimates; finite element methods; Campanato spaces;
D O I
10.1090/S0025-5718-99-01175-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a priori estimates and optimal error estimates for linear finite element approximations of elliptic systems in divergence form with continuous coefficients in Campanato spaces. The proofs rely on discrete analogues of the Campanato inequalities for the solution of the system, which locally measure the decay of the energy. As an application of our results we derive W-1,W-p-estimates and give a new proof of the well-known W-1,W-infinity-results of Rannacher and Scott.
引用
收藏
页码:1397 / 1427
页数:31
相关论文
共 25 条
[1]  
Aguilera N. E., 1986, Calcolo, V23, P327, DOI 10.1007/BF02576116
[2]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37
[3]  
Brenner S. C., 2007, Texts Appl. Math., V15
[4]  
Campanato S., 1980, Sistemi ellittici in forma divergenza
[5]  
Campanato S, 1965, ANN MAT PUR APPL, V69, P321, DOI 10.1007/BF02414377
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[7]   ESTIMATES FOR GREEN MATRICES OF ELLIPTIC-SYSTEMS BY L(P) THEORY [J].
DOLZMANN, G ;
MULLER, S .
MANUSCRIPTA MATHEMATICA, 1995, 88 (02) :261-273
[8]  
DOLZMANN G, 1991, BONNER MATH SCHRIFTE, V228, P95
[9]  
DOLZMANN G, 1994, BONNER MATH SCHRIFTE, V251
[10]   A NOTE ON THE CONVERGENCE OF LINEAR FINITE-ELEMENTS [J].
DURAN, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1032-1036