An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings

被引:59
作者
Marsch-Martinez, Nayelli [1 ,2 ,3 ,4 ]
Franken, John [2 ]
Gonzalez-Aguilera, Karla L. [5 ]
de Folter, Stefan [5 ]
Angenent, Gerco [2 ]
Alvarez-Buylla, Elena R. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ecol, Mexico City, DF, Mexico
[2] Univ Wageningen & Res Ctr, Plant Res Int, Wageningen, Netherlands
[3] CINVESTAV, IPN, Dept Biotecnol & Bioquim, Irapuato, Gto, Mexico
[4] CINVESTAV, IPN, Dept Ingn Genet, Unidad Irapuato, Irapuato, Gto, Mexico
[5] CINVESTAV, IPN, Lab Nacl Genom Biodiversidad, Irapuato, Gto, Mexico
来源
PLANT METHODS | 2013年 / 9卷
关键词
FT PROTEIN; SHOOT; TRANSPORT; COTYLEDON; MOVEMENT; PLANTS; RNAS; ROOT;
D O I
10.1186/1746-4811-9-14
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Grafting procedures are an excellent tool to study long range signalling processes within a plant. In the last decade, suitable flat-surface grafting procedures for young Arabidopsis seedlings using a collar to support the graft have been developed, allowing the study of long-range signals from a molecular perspective. Results: In the modification presented here, scion and stock are put together on the medium without supporting elements, while cotyledons are removed from the scion, resulting in increased grafting success that can reach up to 100%. At the same time, the protocol enables to process as many as 36 seedlings per hour, which combined with the high success percentage represents increased efficiency per time unit. Conclusions: Growing cotyledons usually push the scion and the rootstock away in the absence of a supporting element. Removing them at the grafting step greatly improved success rate and reduced post-grafting manipulations.
引用
收藏
页数:9
相关论文
共 20 条
  • [1] Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls
    Asahina, M
    Iwai, H
    Kikuchi, A
    Yamaguchi, S
    Kamiya, Y
    Kamada, H
    Satoh, S
    [J]. PLANT PHYSIOLOGY, 2002, 129 (01) : 201 - 210
  • [2] Graft transmission of a floral stimulant derived from CONSTANS
    Ayre, BG
    Turgeon, R
    [J]. PLANT PHYSIOLOGY, 2004, 135 (04) : 2271 - 2278
  • [3] Bainbridge Katherine, 2006, V323, P39
  • [4] The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport
    Bennett, T
    Sieberer, T
    Willett, B
    Booker, J
    Luschnig, C
    Leyser, O
    [J]. CURRENT BIOLOGY, 2006, 16 (06) : 553 - 563
  • [5] Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis
    Brosnan, C. A.
    Mitter, N.
    Christie, M.
    Smith, N. A.
    Waterhouse, P. M.
    Carroll, B. J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (37) : 14741 - 14746
  • [6] Phloem small RNAs, nutrient stress responses, and systemic mobility
    Buhtz, Anja
    Pieritz, Janin
    Springer, Franziska
    Kehr, Julia
    [J]. BMC PLANT BIOLOGY, 2010, 10
  • [7] An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis
    Chen, A
    Komives, EA
    Schroeder, JI
    [J]. PLANT PHYSIOLOGY, 2006, 141 (01) : 108 - 120
  • [8] FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis
    Corbesier, Laurent
    Vincent, Coral
    Jang, Seonghoe
    Fornara, Fabio
    Fan, Qingzhi
    Searle, Iain
    Giakountis, Antonis
    Farrona, Sara
    Gissot, Lionel
    Turnbull, Colin
    Coupland, George
    [J]. SCIENCE, 2007, 316 (5827) : 1030 - 1033
  • [9] Grafting methods for watermelon production
    Hassell, Richard L.
    Memmott, Frederic
    Liere, Dean G.
    [J]. HORTSCIENCE, 2008, 43 (06) : 1677 - 1679
  • [10] Gene Silencing in Arabidopsis Spreads from the Root to the Shoot, through a Gating Barrier, by Template-Dependent, Nonvascular, Cell-to-Cell Movement
    Liang, Dacheng
    White, Rosemary G.
    Waterhouse, Peter M.
    [J]. PLANT PHYSIOLOGY, 2012, 159 (03) : 984 - 1000