High Heat Flux Two-Phase Cooling of Electronics with Integrated Diamond/Porous Copper Heat Sinks and Microfluidic Coolant Supply

被引:0
作者
Palko, James W. [1 ]
Lee, Hyoungsoon [1 ]
Agonafer, Damena D. [1 ]
Zhang, Chi [1 ]
Jung, Ki Wook [1 ]
Moss, Jess [1 ]
Wilbur, Joshua D. [1 ]
Dusseault, Tom J. [1 ]
Barako, Michael T. [1 ]
Houshmand, Farzad [1 ]
Rong, Guoguang [1 ]
Maitra, Tanmoy [1 ]
Gorle, Catherine [1 ]
Won, Yoonjin [2 ]
Rockosi, Derrick [3 ]
Mykyta, Ihor [3 ]
Resler, Dan [3 ]
Altman, David [3 ]
Asheghi, Mehdi [1 ]
Santiago, Juan G. [1 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92717 USA
[3] Raytheon Integrated Def Syst, Adv Technol Programs, Sudbury, MA USA
来源
2016 15TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM) | 2016年
关键词
Two-phase cooling; high heat flux; diamond; porous copper; microfluidics; 3D manifold; boiling; evaporation; phase separation; THERMAL MANAGEMENT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We here present an approach to cooling of electronics requiring dissipation of extreme heat fluxes exceeding 1 kW/cm(2) over similar to 1 cm(2) areas. The approach applies a combination of heat spreading using laser micromachined diamond heat sinks; evaporation/boiling in fine featured (5 mu m) conformal porous copper coatings; microfluidic liquid routing for uniform coolant supply over the surface of the heat sink; and phase separation to control distribution of liquid and vapor phases. We characterize the performance of these technologies independently and integrated into functional devices. We report two-phase heat transfer performance of diamond/porous copper heat sinks with microfluidic manifolding at full device scales (0.7 cm(2)) with heat fluxes exceeding 1300 W/cm(2) using water working fluid. We further show application of hydrophobic phase separation membranes for phase management with heat dissipation exceeding 450 W/cm(2) at the scale of a single extended surface (similar to 300 mu m).
引用
收藏
页码:1511 / 1517
页数:7
相关论文
共 22 条
  • [1] Impact of active thermal management on power electronics design
    Andresen, M.
    Liserre, M.
    [J]. MICROELECTRONICS RELIABILITY, 2014, 54 (9-10) : 1935 - 1939
  • [2] [Anonymous], 2013, TECHN DIG IEEE COMP
  • [3] Bar-Cohen A., INTRACHIP INTERCHIP
  • [4] Cooling the Electronic Brain
    Bar-Cohen, Avram
    Geisler, Karl J. L.
    [J]. MECHANICAL ENGINEERING, 2011, 133 (04) : 38 - 41
  • [5] Barako MT, 2014, INTSOC CONF THERMAL, P736, DOI 10.1109/ITHERM.2014.6892354
  • [6] Advanced thermal management technologies for defense electronics
    Bloschock, Kristen P.
    Bar-Cohen, Avram
    [J]. DEFENSE TRANSFORMATION AND NET-CENTRIC SYSTEMS 2012, 2012, 8405
  • [7] Childs P.R. N., 2001, Practical Temperature Measurement, edited by, P145
  • [8] Optical, thermal and mechanical properties of CVD diamond
    Coe, SE
    Sussmann, RS
    [J]. DIAMOND AND RELATED MATERIALS, 2000, 9 (9-10) : 1726 - 1729
  • [9] Corbin M. V, 2002, 11 ANN AIAA MDA TECH
  • [10] Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger
    David, Milnes P.
    Miler, Josef
    Steinbrenner, Julie E.
    Yang, Yizhang
    Touzelbaev, Maxat
    Goodson, Kenneth E.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (25-26) : 5504 - 5516