Hopf monoids in the category of species

被引:21
作者
Aguiar, Marcelo [1 ]
Mahajan, Swapneel [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Indian Inst Technol Mumbai, Dept Math, Bombay 400076, Maharashtra, India
来源
HOPF ALGEBRAS AND TENSOR CATEGORIES | 2013年 / 585卷
基金
美国国家科学基金会;
关键词
Species; Hopf monoid; Lie monoid; antipode; Hadamard product; partition; composition; linear order; simple graph; generalized permutahedron; Tits product; group-like; primitive; functional calculus; characteristic operation; Hopf power; Eulerian idempotent; Dynkin quasi-idempotent; Garsia-Reutenauer idempotent; Poincare-Birkhoff-Witt; Cartier-Milnor-Moore; HOCHSCHILD HOMOLOGY; ALGEBRAS; DECOMPOSITION; IDEMPOTENTS; ELEMENTS; LIE;
D O I
10.1090/conm/585/11665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hopf monoid (in Joyal's category of species) is an algebraic structure akin to that of a Hopf algebra. We provide a self-contained introduction to the theory of Hopf monoids in the category of species. Combinatorial structures which compose and decompose give rise to Hopf monoids. We study several examples of this nature. We emphasize the central role played in the theory by the Tits algebra of set compositions. Its product is tightly knit with the Hopf monoid axioms, and its elements constitute universal operations on connected Hopf monoids. We study analogues of the classical Eulerian and Dynkin idempotents and discuss the Poincare-Birkhoff-Witt and Cartier-Milnor-Moore theorems for Hopf monoids.
引用
收藏
页码:17 / +
页数:5
相关论文
共 76 条
[1]   Combinatorial Hopf algebras and generalized Dehn-Sommerville relations [J].
Aguiar, M ;
Bergeron, N ;
Sottile, F .
COMPOSITIO MATHEMATICA, 2006, 142 (01) :1-30
[2]  
Aguiar M., 2010, CRM Monogr. Ser, V29
[3]  
Aguiar M., 2006, FIELDS I MONOGR, V23
[4]  
Aguiar Marcelo, 2012, HADAMARD PRODUCT HOP
[5]  
Aguiar Marcelo, 2012, HOPF MONOID GE UNPUB
[6]  
Aguiar Marcelo, 2012, CANADIAN J MATH
[7]  
Aguiar Marcelo, 2012, ARXIV12031572V1
[8]  
[Anonymous], 1998, GRUNDLEHREN MATH WIS, DOI DOI 10.1007/978-3-662-11389-9
[9]  
[Anonymous], 1974, THESIS
[10]  
Aubry Marc, 2009, SEM LOTHAR COMBIN, V62, P22