The ''two and one-half dimensional'' relativistic Vlasov Maxwell system

被引:87
作者
Glassey, R [1 ]
Schaeffer, J [1 ]
机构
[1] CARNEGIE MELLON UNIV,DEPT MATH,PITTSBURGH,PA 15213
关键词
D O I
10.1007/s002200050090
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The motion of a collisionless plasma is modelled by solutions to the Vlasov-Maxwell system. The Cauchy problem for the relativistic Vlasov-Maxwell system is studied in the case when the phase space distribution function f = f(t, x, v) depends on the time t, x epsilon R-2 and v epsilon R-3. Global existence of classical solutions is obtained for smooth data of unrestricted size. A sufficient condition for global smooth solvability is known from [12]: smooth solutions can break down only if particles of the plasma approach the speed of light. An a priori bound is obtained on the velocity support of the distribution function, from which the result follows.
引用
收藏
页码:257 / 284
页数:28
相关论文
共 29 条
[1]  
ASANO K, 1986, PATTERN WAVES, P369
[2]  
BARDOS C, 1985, C R ACAD SCI PARIS 1, V310, P265
[3]  
BATT J, 1991, CR ACAD SCI I-MATH, V313, P411
[4]   GLOBAL SYMMETRIC SOLUTIONS OF INITIAL VALUE-PROBLEM OF STELLAR DYNAMICS [J].
BATT, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (03) :342-364
[5]  
DEGOND P, 1984, 117 CTR MATH APPL EC
[6]   ON THE ONE AND 1/2 DIMENSIONAL RELATIVISTIC VLASOV-MAXWELL SYSTEM [J].
GLASSEY, R ;
SCHAEFFER, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 13 (02) :169-179
[7]  
Glassey R., 1988, Transport Theory and Statistical Physics, V17, P467, DOI 10.1080/00411458808230876
[8]  
GLASSEY R, IN PRESS ARCH RAT ME
[9]  
Glassey R.T., 1984, Fluids and Plasmas: Geometry and Dynamics,, V28, P269
[10]   GLOBAL EXISTENCE FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM WITH NEARLY NEUTRAL INITIAL DATA [J].
GLASSEY, RT ;
SCHAEFFER, JW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (03) :353-384