Theories of thermal stresses based on space-time-fractional telegraph equations

被引:55
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
Non-Fourier heat conduction; Fractional calculus; Telegraph equation; Thermal stresses; Mittag-Leffler functions; MULTIDIMENSIONAL SOLUTIONS; HEAT-CONDUCTION; DIFFUSION;
D O I
10.1016/j.camwa.2012.01.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized telegraph equations with time- and space-fractional derivatives are considered. The corresponding theories of thermal stresses are formulated. The proposed theories interpolate the classical thermoelasticity, the theory of Lord and Shulman, thermoelasticity without energy dissipation of Green and Naghdi, and theories of fractional thermoelasticity proposed earlier. The fundamental solution to the nonhomogeneous space-time-fractional telegraph equation as well as the corresponding thermal stresses are obtained in the axisymmetric case. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3321 / 3328
页数:8
相关论文
共 35 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], P 6 INT C THERM STRE
[3]   A diffusion wave equation with two fractional derivatives of different order [J].
Atanackovic, T. M. ;
Pilipovic, S. ;
Zorica, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) :5319-5333
[4]   DEFINITION OF PHYSICALLY CONSISTENT DAMPING LAWS WITH FRACTIONAL DERIVATIVES [J].
BEYER, H ;
KEMPFLE, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (08) :623-635
[5]   Fractional telegraph equations [J].
Cascaval, RC ;
Eckstein, EC ;
Frota, CL ;
Goldstein, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :145-159
[6]  
CATTANEO C., 1948, ATTI SEMINAR MAT FIS, V3, P3
[7]  
Chandrasekharaiah D. S., 1986, APPL MECH REV, V39, P355, DOI [DOI 10.1115/1.3143705, 10.1115/1.3143705]
[8]  
Chandrasekharaiah D. S., 1998, APPL MECH REV, V51, P705, DOI [DOI 10.1115/1.3098984, 10.1115/1.3098984]
[9]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[10]   On the Propagation of Second-Sound in Nonlinear Media: Shock, Acceleration and Traveling Wave Results [J].
Christov, Ivan C. ;
Jordan, P. M. .
JOURNAL OF THERMAL STRESSES, 2010, 33 (12) :1109-1135