AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing

被引:0
|
作者
Shekaramiz, Mohammad [1 ]
Moon, Todd K.
Gunther, Jacob H.
机构
[1] Utah State Univ, Elect & Comp Engn Dept, Logan, UT 84322 USA
来源
2016 IEEE 7TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS MOBILE COMMUNICATION CONFERENCE (UEMCON) | 2016年
关键词
Compressive sensing; Sparse Bayesian learning (SBL); single measurement vector (SMV); clustered pattern; approximate message passing (AMP); RECOVERY;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, we proposed an algorithm for the single measurement vector problem where the underlying sparse signal has an unknown clustered pattern. The algorithm is essentially a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. Treating the cluster pattern is controlled via a knob that accounts for the amount of clumpiness in the solution. The parameter corresponding to the knob is learned using expectation-maximization algorithm. In this paper, we provide further study by comparing the performance of our algorithm with other algorithms in terms of support recovery, mean-squared error, and an example in image reconstruction in a compressed sensing fashion.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On Approximate Message Passing Algorithms for Unlimited Sampling of Sparse Signals
    Musa, Osman
    Jung, Peter
    Caire, Giuseppe
    2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 131 - 135
  • [2] Sparse or Dense - Message Passing (MP) or Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery
    Mahmood, Asad
    Kang, Jaewook, Jr.
    Lee, HeungNo
    2013 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2013, : 259 - 264
  • [3] Generalized Approximate Message Passing for Unlimited Sampling of Sparse Signals
    Musa, Osman
    Jung, Peter
    Goertz, Norbert
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 336 - 340
  • [4] On Approximate Message Passing for Reconstruction of Non-Uniformly Sparse Signals
    Som, Subhojit
    Potter, Lee C.
    Schniter, Philip
    PROCEEDINGS OF THE IEEE 2010 NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2010, : 223 - 229
  • [5] Sparse Bayesian Learning Using Approximate Message Passing
    Al-Shoukairi, Maher
    Rao, Bhaskar
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 1957 - 1961
  • [6] Swept Approximate Message Passing for Sparse Estimation
    Manoel, Andre
    Krzakala, Florent
    Tramel, Eric W.
    Zdeborova, Lenka
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1123 - 1132
  • [7] Distributed Compressed Sensing via Generalized Approximate Message Passing for Jointly Sparse Signals
    Si, Jingjing
    Cheng, Yinbo
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (04) : 702 - 707
  • [8] Unitary Approximate Message Passing for Sparse Bayesian Learning
    Luo, Man
    Guo, Qinghua
    Jin, Ming
    Eldar, Yonina C.
    Huang, Defeng
    Meng, Xiangming
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 6023 - 6038
  • [9] Distributed Approximate Message Passing for Sparse Signal Recovery
    Han, Puxiao
    Niu, Ruixin
    Ren, Mengqi
    Eldar, Yonina C.
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 497 - 501
  • [10] Energy Efficient Sparse Bayesian Learning using Learned Approximate Message Passing
    Thomas, Christo Kurisummoottil
    Mundlamuri, Rakesh
    Murthy, Chandra R.
    Kountouris, Marios
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 271 - 275